Publications by authors named "Asta Guobiene"

In the present research, hexagonal boron nitride (h-BN) films were deposited by reactive high-power impulse magnetron sputtering (HiPIMS) of the pure boron target. Nitrogen was used as both a sputtering gas and a reactive gas. It was shown that, using only nitrogen gas, hexagonal-boron-phase thin films were synthesized successfully.

View Article and Find Full Text PDF

The high surface area and transfer-less growth of graphene on dielectric materials is still a challenge in the production of novel sensing devices. We demonstrate a novel approach to graphene synthesis on a C-plane sapphire substrate, involving the microwave plasma-enhanced chemical vapor deposition (MW-PECVD) technique. The decomposition of methane, which is used as a precursor gas, is achieved without the need for remote plasma.

View Article and Find Full Text PDF

Biosensors based on graphene field-effect transistors (G-FET) for detecting COVID-19 spike S protein and its receptor ACE2 were reported. The graphene, directly synthesized on SiO/Si substrate by microwave plasma-enhanced chemical vapor deposition (MW-PECVD), was used for FET biosensor fabrication. The commercial graphene, CVD-grown on a copper substrate and subsequently transferred onto a glass substrate, was applied for comparison purposes.

View Article and Find Full Text PDF

Herein we investigated hydrophilic surface modification of SiO containing amorphous hydrogenated carbon nanocomposite films (DLC:SiO) via the use of atmospheric oxygen plasma treatment. The modified films exhibited effective hydrophilic properties with complete surface wetting. More detailed water droplet contact angle (CA) measurements revealed that oxygen plasma treated DLC:SiO films maintained good wetting properties with CA of up to 28 ± 1° after 20 days of aging in ambient air at room temperature.

View Article and Find Full Text PDF

Graphene was synthesized directly on Si(100) substrates by microwave plasma-enhanced chemical vapor deposition (MW-PECVD). The effects of the graphene structure on the electrical and photovoltaic properties of graphene/n-Si(100) were studied. The samples were investigated using Raman spectroscopy, atomic force microscopy, and by measuring current-voltage (I-V) graphs.

View Article and Find Full Text PDF

The trilayer composite was fabricated by combining functional layers of fumed SiO, thiol-ene, and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS). Optical, scratch-healing, non-wetting, and electrical stability was investigated at different instances of time after thermal and solar irradiance treatment. The trilayer composite was found to be optically stable and highly transparent for visible light after thermal and irradiance treatment for 25 h.

View Article and Find Full Text PDF

Free-standing composite films were fabricated by combining the plane parallel layers of thiol-ene based on pentaerythritol tetrakis(3-mercaptopropionate)-1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (PETMP-TTT) UV curable polymer and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conductive polymer. A systematic analysis was performed with the focus on mechanical performance of the free-standing composite films. The PEDOT:PSS/PETMP-TTT composite exhibited higher values of adhesion force compared to the free-standing PETMP-TTT film due to hydrophilic nature of the PEDOT:PSS layer.

View Article and Find Full Text PDF

This paper presents the first attempt to texturize a fully crosslinked thermoset shape memory polymer using a hot embossing technique. UV-cured thiol-ene films were successfully embossed with anisotropically-etched Si (100) stamps at a temperature of 100 °C, which is about 50 °C above the glass transition temperature of the polymer. The low storage modulus of the polymer in a rubbery state allowed us to permanently emboss random micro-pyramidal patterns onto the surface of the film with high fidelity by applying 30 MPa pressure for 1 h.

View Article and Find Full Text PDF

Background: In the last decades, nosocomial infections caused by drug-resistant became a common problem in healthcare facilities. Antibiotics are becoming less effective as new resistant strains appear. Therefore, the development of novel enhanced activity antibacterial agents becomes very significant.

View Article and Find Full Text PDF

In the present research, hydrogen-free diamond like carbon films with embedded copper nanoparticles (DLC:Cu) were grown by simultaneous DC magnetron sputtering of the graphite and copper targets. X-ray photoelectron spectroscopy was used to define the composition of the samples. Atomic force microscopy studies of diamond, like carbon films containing different amount of copper, revealed wide range of the surface morphologies as well as sizes and shapes of the embedded copper nanoclusters.

View Article and Find Full Text PDF

A photopolymerizable thiol-ene composition was prepared as a mixture of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT), with 1 wt. % of 2,2-dimethoxy-2-phenylacetophenone (DMPA) photoinitiator. A systematic analytical analysis that investigated the crosslinked PETMP-TTT polymer coatings employed Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, differential scanning calorimetry, thermogravimetric analysis, pencil hardness, thermo-mechanical cyclic tensile, scratch testing, and atomic force microscopy.

View Article and Find Full Text PDF

This paper reviews recent investigations and achievements in the design of controllable functional components for improving microfluidic systems, its effectiveness, and functionality. The main purpose was to design novel microstructures with piezoelectric properties (microresonators), which enable one to control the effectiveness of fluid flow in micro-hydro-mechanical devices for biomedical/biochemical purposes. Controllable properties were obtained by incorporating different types of binders in a piezoelectric ceramic matrix (lead zirconate titanate): polyvinyl butyral (PVB), poly methyl methacrylate (PMMA), and polystyrene (PS).

View Article and Find Full Text PDF

With increasing technical requirements in the design of microresonators, the development of new techniques for lightweight, simple, and inexpensive components becomes relevant. Lead zirconate titanate (PZT) is a powerful tool in the formation of these components, allowing a self-actuation or self-sensing capability. Different fabrication methods lead to the variation of the properties of the device itself.

View Article and Find Full Text PDF

A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated.

View Article and Find Full Text PDF