Microalgae are photosynthetic unicellular organisms that can be found in very different environments, both terrestrial and marine, including extreme environments such as cold, hot and high/low salinity [...
View Article and Find Full Text PDFThe deep-sea environment is a unique, challenging extreme habitat where species have had to adapt to the absence of light, low levels of oxygen, high pressure and little food. In order to survive such harsh conditions, these organisms have evolved different biochemical and physiological features that often have no other equivalent in terrestrial habitats. Recent analyses have highlighted how the deep sea is one of the most diverse and species-rich habitats on the planet but less explored compared to more accessible sites.
View Article and Find Full Text PDFAccording to the WHO classification of tumors, more than 150 typologies of hematopoietic and lymphoid tumors exist, and most of them remain incurable diseases that require innovative approaches to improve therapeutic outcome and avoid side effects. Marine organisms represent a reservoir of novel bioactive metabolites, but they are still less studied compared to their terrestrial counterparts. This review is focused on marine natural products with anticancer activity against hematological tumors, highlighting recent advances and possible perspectives.
View Article and Find Full Text PDFMicroalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies.
View Article and Find Full Text PDFChlorophyll breakdown products are usually studied for their antioxidant and anti-inflammatory activities. The chlorophyll derivative Pheophorbide (PPB) is a photosensitizer that can induce significant anti-proliferative effects in several human cancer cell lines. Cancer is a leading cause of death worldwide, accounting for about 9.
View Article and Find Full Text PDFCancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR) continues to pose a significant challenge in the management of cancer.
View Article and Find Full Text PDF5-FU is a chemotherapy drug commonly used for the treatment of human cancers; however drug resistance represents a major challenge for its clinical application. In the present study, we reporte that rpL3 induced by 5-FU treatment in Calu-6 cells represses CBS transcription and reduces CBS protein stability leading to a decrease of CBS protein levels. rpL3 also regulates negatively the activation of NFκB by preventing NFκB nuclear translocation through IκB-α up-regulation.
View Article and Find Full Text PDFRecent findings revealed in cancer cells novel stress response pathways, which in response to many chemotherapeutic drugs causing nucleolar stress, will function independently from tumor protein p53 (p53) and still lead to cell cycle arrest and/or apoptosis. Since it is known that most cancers lack functional p53, it is of great interest to explore these emerging molecular mechanisms. Here, we demonstrate that nucleolar stress induced by 5-fluorouracil (5-FU) in colon cancer cells devoid of p53 leads to the activation of ribosomal protein L3 (rpL3) as proapoptotic factor.
View Article and Find Full Text PDFDysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction.
View Article and Find Full Text PDF