Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment. They may drive tumor progression, although the mechanisms involved are still poorly understood. Exosomes have emerged as important mediators of intercellular communication in cancer.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is characterized by a strong self-renewal potential and a poor differentiation state. Since receptor-like tyrosine kinase (RYK) activates the WNT/β-catenin pathway essential for cancer stem cell maintenance, we evaluated its contribution in conferring stemness to GBM cells. Here, we report that Ryk (related-to-receptor tyrosine kinase), an atypical tyrosine kinase receptor, is upregulated in samples from GBM patients as well as in GSCs.
View Article and Find Full Text PDFBreast cancer remains one of the leading causes of cancer mortality among women. It has been proved that the onset of cancer depends on a very small pool of tumor cells with a phenotype similar to that of normal adult stem cells. Cancer stem cells (CSC) possess self-renewal and multilineage differentiation potential as well as a robust ability to sustain tumorigenesis.
View Article and Find Full Text PDFGlioblastoma is the most common primary brain tumor in adults; with a survival rate of 12 months from diagnosis. However, a small subgroup of patients, termed long-term survivors (LTS), has a survival rate longer then 12-14 months. There is thus increasing interest in the identification of molecular signatures predicting glioblastoma prognosis and in how to improve the therapeutic approach.
View Article and Find Full Text PDF