We present here a gene therapy approach aimed at preventing the formation of Ca-permeable amyloid pore oligomers that are considered as the most neurotoxic structures in both Alzheimer's and Parkinson's diseases. Our study is based on the design of a small peptide inhibitor (AmyP53) that combines the ganglioside recognition properties of the β-amyloid peptide (Aβ, Alzheimer) and α-synuclein (α-syn, Parkinson). As gangliosides mediate the initial binding step of these amyloid proteins to lipid rafts of the brain cell membranes, AmyP53 blocks, at the earliest step, the Ca cascade that leads to neurodegeneration.
View Article and Find Full Text PDFPurpose: Interactions between endothelial and tumor cells via E-selectin and sialyl Lewis x (sLex) have been suggested to play a significant role in the development of metastasis and tumor growth. In this work, we tested whether inhibition of E-selectin expression on the surface of endothelial cells might impair endothelial/tumor cells interactions and tumor growth of hepatocarcinoma cells in vitro and in vivo.
Methods: We used HepG2 cells that highly express sLex antigens and HuH7 cells that do not express sLex.
Whole-body imaging of experimental tumor growth is more feasible within the near-infrared (NIR) optical window because of the highest transparency of mammalian tissues within this wavelength spectrum, mainly due to improved tissue penetration and lower autofluorescence. We took advantage from the recently cloned infrared fluorescent protein (iRFP) together with a human immunodeficiency virus (HIV)-based lentiviral vector to produce virally transduced tumor cells that permanently express this protein. We then noninvasively explored metastatic spread as well as primary tumor growth in deep organs and behind bone barriers.
View Article and Find Full Text PDFPurpose: To study the role of the adrenomedullin system [adrenomedullin and its receptors (AMR), CLR, RAMP2, and RAMP3] in prostate cancer androgen-independent growth.
Experimental Design: Androgen-dependent and -independent prostate cancer models were used to investigate the role and mechanisms of adrenomedullin in prostate cancer hormone-independent growth and tumor-associated angiogenesis and lymphangiogenesis.
Results: Adrenomedullin and AMR were immunohistochemically localized in the carcinomatous epithelial compartment of prostate cancer specimens of high grade (Gleason score >7), suggesting a role of the adrenomedullin system in prostate cancer growth.
Lebecetin is an anticoagulant C-type lectin-like protein that was previously isolated from Macrovipera lebetina venom and described to consist of two subunits (alpha and beta). It was reported to potently prevent platelet aggregation by binding to glycoprotein Ib and to exhibit a broad spectrum of inhibitory activities on various integrin-mediated functions of tumor cells, including adhesion, proliferation, and cell migration. This study aimed to investigate the structure-function of lebecetin.
View Article and Find Full Text PDFMimicking the biochemical reactions that take place in cell organelles is becoming one of the most important challenges in biological chemistry. In particular, reproducing the Golgi glycosylation system in vitro would allow the synthesis of bioactive glycan polymers and glycoconjugates for many future applications including treatments of numerous pathologies. In the present study, we reconstituted a membrane system enriched in glycosyltransferases obtained by combining the properties of the wheat germ lectin with the dialysable detergent n-octylglucoside.
View Article and Find Full Text PDFIntegrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties.
View Article and Find Full Text PDFThe glycoantigen sialyl-Lewis x (sLex) and its isomer sialy-Lewis a (sLea) are frequently associated with advanced states of cancer and metastasis. In a previous work, we have shown that hepatocarcinoma cells (HCC) HepG2 interact with the endothelial E-selectin exclusively through sLe(x) oligosaccharides, the synthesis of which could be completely prevented by the alpha(1,2)-fucosyltransferase-I (FUT1), thus resulting in a strong inhibition of adhesion and rolling on activated endothelial cells. The purpose of the present study was to evaluate the impact of inhibiting sLex synthesis and the subsequent E-selectin adhesion, on HCC tumor growth in nude mice.
View Article and Find Full Text PDFTo analyze the Golgi compartmentalization of glycosyltransferases (GTs), we generated versions of several enzymes fused to either the enhanced green fluorescent protein (EGFP) or the red fluorescent protein from Discosoma sp. reef coral (DsRed2) and examined their intracellular distribution by confocal fluorescence microscopy in living cells. In a previous work, we have shown that the N-terminal peptides of GTs, encompassing the cytosolic and the transmembrane domains (CTDs), can serve as Golgi-targeting signals to localize the enzymes to their corresponding compartments within the Golgi apparatus (Zerfaoui et al.
View Article and Find Full Text PDFThe core2 beta(1,6)-N-acetylglucosaminyltransferase-I (C2GnT-I) is expressed by leukocytes and is involved in the synthesis of core2 O-glycans that carry sialyl-Lewis x (sLex) oligosaccharides. The core2-based sLex oligosaccharides (C2-O-sLex) have been demonstrated to be physiological selectin ligands that confer high affinity binding. The E-, P-, and L-selectins are adhesion proteins that direct leukocytes in the blood to lymphoid organs and sites of inflammation.
View Article and Find Full Text PDFC2GnT-I [core2 beta(1,6)-N-acetyglucosaminyltransferase-I] and FucT-VII [alpha(1,3)-fucosyltransferase-VII] are the key enzymes for the biosynthesis of sialyl-Lewis x determinants on selectin ligands and therefore they represent good drug targets for the treatment of inflammatory disorders and other pathologies involving selectins. In the present study, we examined the importance of N-glycosylation for the ability of C2GnT-I and FucT-VII to generate functional selectin ligands, particularly the PSGL-1 (P-selectin glycoprotein ligand-1). We found that (i) both enzymes have their two N-glycosylation sites occupied, (ii) for C2GnT-I, the N-glycan chain linked to Asn-95 significantly contributes to the synthesis of functional PSGL-1 and is required to localize the enzyme to the cis/medial-Golgi compartment, (iii) all N-glycosylation-deficient proteins of FucT-VII displayr a dramatic impairment of their in vitro enzymatic activities, but retain their ability to fucosylate the core2-modified PSGL-I and to generate P- and L-selectin binding, and (iv) the glycomutants of FucT-VII fail to synthesize sialyl-Lewis x or to generate E-selectin binding unless core2-modified PSGL-1 is present.
View Article and Find Full Text PDFArch Oral Biol
February 2005
In restorative dentistry, deep cavity preparation may lead to partial destruction of the odontoblastic layer. However, newly formed odontoblast-like cells can replace the necrotic odontoblasts and secrete a reparative dentine matrix. While growth factors such as transforming growth factor beta1 (TGFbeta1) and bone morphogenetic proteins (BMP-2 and BMP-4) seem to be involved in the proliferation and differentiation of pulp cells, little is known about the migration of the newly proliferating stem cells to the injury site.
View Article and Find Full Text PDFDuring inflammation, E- and P-selectins appear on activated endothelial cells to interact with leukocytes through sialyl-Lewis x and sialyl-Lewis a antigens (sLe(x/a)). These selectins can also interact with tumor cells in a sialyl-Lewis-dependent manner and for this reason, they are thought to play a key role in metastasis. Diverting the biosynthesis of sialyl-Lewis antigens toward nonadhesive structures is an attractive gene therapy for preventing the hematogenous metastatic spread of cancers.
View Article and Find Full Text PDFModification of Golgi glycosyltransferases, such as formation of disulfide-bonded dimers and proteolytical release from cells as a soluble form, are important processes to regulate the activity of glycosyltransferases. To better understand these processes, six glycosyltransferases were selected on the basis of the donor sugars, including two N-acetylglucosaminyltransferases, core 1 beta1,3-N-acetylglucosaminyltransferase (C1-beta3GnT) and core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-I); two fucosyltransferases, alpha1,2-fucosyltransferase-I (FucT-I) and alpha1,3-fucosyltransferase-VII (FucT-VII); and two sialyltransferases, alpha2,3-sialyltransferase-I (ST3Gal-I) and alpha2,6-sialyltransferase-I (ST6Gal-I). These enzymes were fused with enhanced green fluorescence protein and stably expressed in Chinese hamster ovary cells.
View Article and Find Full Text PDFIt has been previously shown that glucose transporter Glut-1 expression was detectable by immunostaining in tissue sections from anaplastic carcinoma, but not in normal thyroid tissue. Using human thyroid anaplastic carcinoma cells, we studied the mechanism by which Glut-1 molecules are translocated from the endoplasmic reticulum to the cell surface. The contribution of N- and O-linked glycans for the translocation and activity of Glut-1 transporter is emphasized.
View Article and Find Full Text PDFJ Immunol Methods
January 2003
Accumulating evidence suggests that E-selectin, which is physiologically involved in leukocyte recruitment during inflammation, plays an important role in the early stages of tumor cell interactions with vessel walls and contributes to the hematogenous spreading of cancer cells. Therapy designed to block this key step may provide an effective anti-inflammatory and anti-metastatic treatment. It is therefore critical to establish a safe, rapid and sensitive E-selectin adhesion assay.
View Article and Find Full Text PDFThe beta 1,6 N-acetylglucosaminyltransferase (C2GnT) has been recently mapped to the cis/medial-Golgi compartment. To analyze the Golgi-targeting determinants of C2GnT, we constructed various deletion mutants of the enzyme fused to the enhanced green fluorescent protein (EGFP) and localized these proteins by fluorescence microscopy in living cells. We found that the N-terminal peptide encompassing amino acids 1 to 32 represents the minimal Golgi-targeting signal sufficient to localize EGFP to the same compartment as the full-length C2GnT.
View Article and Find Full Text PDF