Implementing two-dimensional materials in field-effect transistors (FETs) offers the opportunity to continue the scaling trend in the complementary metal-oxide-semiconductor technology roadmap. Presently, the search for electrically active defects, in terms of both their density of energy states and their spatial distribution, has turned out to be of paramount importance in synthetic transition metal dichalcogenides layers, as they are suspected of severely inhibiting these devices from achieving their highest performance. Although advanced microscopy tools have allowed the direct detection of physical defects such as grain boundaries and point defects, their implementation at the device scale to assess the active defect distribution and their impact on field-induced channel charge modulation and current transport is strictly restrained.
View Article and Find Full Text PDFIn view of its epitaxial seeding capability, -plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX monolayer.
View Article and Find Full Text PDFTwo-dimensional semiconducting materials are considered as ideal candidates for ultimate device scaling. However, a systematic study on the performance and variability impact of scaling the different device dimensions is still lacking. Here we investigate the scaling behavior across 1300 devices fabricated on large-area grown MoS material with channel length down to 30 nm, contact length down to 13 nm and capacitive effective oxide thickness (CET) down to 1.
View Article and Find Full Text PDF2D materials offer a pathway for further scaling of CMOS technology. However, for this to become a reality, both n-MOS and p-MOS should be realized, ideally with the same (standard) material. In the specific case of MoS field effect transistors (FETs), ambipolar transport is seldom reported, primarily due to the phenomenon of Fermi level pinning (FLP).
View Article and Find Full Text PDFToday, one of the key challenges of graphene devices is establishing fabrication processes that can ensure performance stability and repeatability and that can eventually enable production in high volumes. In this paper, we use up-scalable fabrication processes to demonstrate three five-channel wavelength-division multiplexing (WDM) transmitters, each based on five graphene-silicon electro-absorption modulators. A passivation-first approach is used to encapsulate graphene, which results in hysteresis-free and uniform performance across the five channels of each WDM transmitter, for a total of 15 modulators.
View Article and Find Full Text PDFIn this paper, we explore the impact of changing the growth conditions on the substrate surface during the metal-organic vapor phase epitaxy of 2D-transition metal dichalcogenides. We particularly study the growth of molybdenum disulfide (MoS) on sapphire substrates at different temperatures. We show that a high temperature leads to a perfect epitaxial alignment of the MoS layer with respect to the sapphire substrate underneath, whereas a low temperature growth induces a 30° epitaxial alignment.
View Article and Find Full Text PDFStraightforward syntheses of bis[bis{1,2-bis(diphenylphosphino)ethane}ruthenium]-functionalized 1,3,5-triethynylbenzene-cored complexes via a methodology employing "steric control" permit facile formation of Y-shaped Sonogashira coupling products and distorted-H-shaped homo-coupled quadrupolar products. Cyclic voltammetric data from these products reveal two reversible metal alkynyl-localized oxidation processes for all complexes. The wavelengths of the linear optical absorption maxima are dominated by the nature of the peripheral alkynyl ligand rather than the substituent at the unique arm of the "Y" or at the quadrupolar complex "core".
View Article and Find Full Text PDFThe rapid cadence of MOSFET scaling is stimulating the development of new technologies and accelerating the introduction of new semiconducting materials as silicon alternative. In this context, 2D materials with a unique layered structure have attracted tremendous interest in recent years, mainly motivated by their ultra-thin body nature and unique optoelectronic and mechanical properties. The development of scalable synthesis techniques is obviously a fundamental step towards the development of a manufacturable technology.
View Article and Find Full Text PDFWe report for the first time and characterize experimentally the complex optical conductivity of graphene on silicon photonic waveguides. This permits us to predict accurately the behavior of photonic integrated devices encompassing graphene layers. Exploiting a Si microring add/drop resonator, we show the effect of electrical gating of graphene on the complex effective index of the waveguide by measuring both the wavelength shift of the resonance and the change in the drop peak transmission.
View Article and Find Full Text PDFDespite rapid progress in 2D molybdenum disulfide (MoS) research in recent years, MoS field-effect transistors (FETs) still suffer from a high metal-to-MoS contact resistance and low intrinsic mobility, which are major hindrances to their future application. We report an efficient technique to dope thin-film MoS FETs using a poly(vinyl-alcohol) (PVA) polymeric coating. This results in a reduction of the contact resistance by up to 30% as well as a reduction in the channel resistance to 20 kΩ sq.
View Article and Find Full Text PDFOne current key challenge in graphene research is to tune its charge carrier concentration, i.e., p- and n-type doping of graphene.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2015
Electro-optical switching can be achieved by changing the optical absorption of metal nanoparticles by adding or removing electrical charge, corresponding to increased, respectively, decreased electron density. In this work a different approach is taken by changing the photoluminescence properties as a function of electrical charge on gold nanoparticles. Whereas larger gold nanoparticles (diameter d = 5 and 10 nm), exhibiting a plasmon resonance peak in the absorption spectrum, were used to measure changes of the optical absorption spectrum upon electrical charging, for smaller gold nanoparticles (d = 2 and 5 nm) electrical charging was observed via changes of the photoluminescence.
View Article and Find Full Text PDFGraphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications.
View Article and Find Full Text PDFIn this article, we present the simulation, fabrication, and characterization of a novel bilayer graphene field-effect transistor exhibiting electron mobility up to ~1600 cm(2) V(-1) s(-1), a room temperature I on/I off ≈ 60, and the lowest total charge (~10(11) cm(-2)) reported to date. This is achieved by combined electrostatic and chemical doping of bilayer graphene, which enables one to switch off the device at zero top-gate voltage. Using density functional theory and atomistic simulations, we obtain physical insight into the impact of chemical and electrostatic doping on bandgap opening of bilayer graphene and the effect of metal contacts on the operation of the device.
View Article and Find Full Text PDFRegioregular poly(3-hexylthiophene)s with chain lengths varying from 5 to 100 monomers are synthesized. Poly(3-hexylthiophene)s show in solution an unexpectedly significant second-order nonlinear optical response. The increase in transition dipole moment upon oligomerisation causes the significant second-order nonlinear optical response.
View Article and Find Full Text PDFCharged chromophores based on heteroaromatic cations were prepared by reaction of alkylazinium salts with N-heteroarylstannanes under Stille conditions. This approach provides easy access to potential single donor D-A(+) chromophores in which the acceptor moiety A(+) is the pyridinium cation and the donors are different π-excessive N-heterocycles. The β hyperpolarizabilities were measured in hyper-Rayleigh scattering experiments and the experimental data are supported by a theoretical analysis that combines a variety of computational procedures, including density functional theory and correlated Hartree-Fock-based methods.
View Article and Find Full Text PDFThis work reports the first example of a single-chain protein computationally designed to contain four α-helical segments and fold to form a four-helix bundle encapsulating a supramolecular abiological chromophore that possesses exceptional nonlinear optical properties. The 109-residue protein, designated SCRPZ-1, binds and disperses an insoluble hyperpolarizable chromophore, ruthenium(II) [5-(4'-ethynyl-(2,2';6',2″-terpyridinyl))-10,20-bis(phenyl)porphinato]zinc(II)-(2,2';6',2″-terpyridine)(2+) (RuPZn) in aqueous buffer solution at a 1:1 stoichiometry. A 1:1 binding stoichiometry of the holoprotein is supported by electronic absorption and circular dichroism spectra, as well as equilibrium analytical ultracentrifugation and size exclusion chromatography.
View Article and Find Full Text PDFIn this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices.
View Article and Find Full Text PDFThe structural and electronic properties of a highly solvatochromic merocyanine dye, 2-(3-cyano-5,5-dimethyl-4-(3-(1-octadecylpyridin-4(1H)-ylidene)prop-1-enyl)furan-2(5H)-ylidene)malononitrile (pyr3pi), have been investigated using UV-vis, NMR, hyper-Rayleigh scattering, and Raman spectroscopies and further interpreted using computational chemistry. Spectroscopic data indicate that pyr3pi exists in its zwitterionic form even in low polarity solvents with electronic absorption spectra showing a hypsochromic shift with an increase in solvent polarity and NMR experiments indicating an increasingly zwitterionic structure in chloroform as the temperature is lowered. Raman spectra in increasingly polar solvents show small variations of the structure that are consistent with a change toward a structure with more zwitterionic character.
View Article and Find Full Text PDFHeteroaromatic cations reacted with N-heteroarylacetylenes under Sonogashira conditions to allow easy access to potential single donor D-π-A(+) and V-shaped D-π-A(+)-π-D chromophores, where the acceptor moiety A is the π-deficient pyridinium cation and the donor moiety is represented by different π-excessive N-heterocycles. The β hyperpolarizabilities were measured using hyper-Rayleigh scattering experiments and the experimental data are supported by a theoretical analysis that combines a variety of computational procedures, including Density Functional Theory (DFT) and correlated Hartree-Fock-based methods (RCIS(D)).
View Article and Find Full Text PDFNine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions.
View Article and Find Full Text PDFA concept of chiral, X-type organized π-conjugated oligomers, linked by means of a binaphthalene pincer, is presented. NMR spectroscopy and cyclic and differential pulse voltammetry indicate that these oligomers are in close proximity and influence each other in a through-space manner in their neutral as well as in their oxidized states. The interaction between the oligomers was also confirmed by UV-vis, CD, and emission spectroscopy.
View Article and Find Full Text PDFSix new dicationic 2D nonlinear optical (NLO) chromophores with pyrazinyl-pyridinium electron acceptors have been synthesized by nucleophilic substitutions of 2,6-dichloropyrazine with pyridyl derivatives. These compounds have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Large red shifts in the intense, π → π* intramolecular charge-transfer (ICT) transitions on replacing -OMe with -NMe(2) substituents arise from the stronger π-electron donor ability of the latter.
View Article and Find Full Text PDFA series of chromophoric salts has been prepared in which 4-(diphenylamino)phenyl (Dpap) electron donor groups are connected to electron-accepting diquaternized 2,2'-bipyridyl (diquat) units. The main aim is to combine large quadratic and cubic nonlinear optical (NLO) effects in potentially redox-switchable molecules with 2D structures. The chromophores have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry.
View Article and Find Full Text PDF