Publications by authors named "Assaf Zinger"

Ionizable lipids are widely recognized as the crucial component of lipid nanoparticles (LNPs). They enable mRNA encapsulation, shield it from enzymatic degradation, facilitate cellular uptake, and foster its cytosolic release for subsequent translation into proteins. In addition, PEGylated lipids are added to stabilize the particles in storage and in vivo.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas.

View Article and Find Full Text PDF

Chagas disease (CD) (American trypanosomiasis caused by ) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms.

View Article and Find Full Text PDF

Traumatic Brain Injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas.

View Article and Find Full Text PDF

In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I present design strategies for the two main biomimetic nanoparticles (BNP) groups: BNP composed of isolated cell membrane proteins, and BNP composed of the native cell membrane. I furthermore describe BNP fabrication methods and analyze their advantages and challenges. Finally, I suggest future therapeutic applications of each BNP group and propose a new revolutionary concept for their use.

View Article and Find Full Text PDF

Cancer is usually not symptomatic in its early stages. However, early detection can vastly improve prognosis. Liquid biopsy holds great promise for early detection, although it still suffers from many disadvantages, mainly searching for specific cancer biomarkers.

View Article and Find Full Text PDF

Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. We demonstrate a 2-fold increase in nanoparticle accumulation in murine ovaries and uterus during ovulation, compared to the nonovulatory stage, following intravenous administration. This biodistribution pattern had positive or negative effects when drug-loaded nanoparticles, sized 100 nm or smaller, were used to treat different cancers.

View Article and Find Full Text PDF

Apolipoprotein-based drug delivery is a promising approach to develop safe nanoparticles capable of targeted drug delivery for various diseases. In this work, we have synthesized a lipid-based nanoparticle (NPs) that we have called "Aposomes" presenting native apolipoprotein B-100 (apoB-100), the primary protein present in Low-Density Lipoproteins (LDL) on its surface. The aposomes were synthesized from LDL isolated from blood plasma using a microfluidic approach.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) triggers both central and peripheral inflammatory responses. Existing pharmacological drugs are unable to effectively and quickly target the brain inflamed regions, setting up a major roadblock towards effective brain trauma treatments. Nanoparticles (NPs) have been used in multiple diseases as drug delivery tools with remarkable success due to their rapid diffusion and specificity in the target organ.

View Article and Find Full Text PDF

Nanovesicles (NVs) are emerging as innovative, theranostic tools for cargo delivery. Recently, surface engineering of NVs with membrane proteins from specific cell types has been shown to improve the biocompatibility of NVs and enable the integration of functional attributes. However, this type of biomimetic approach has not yet been explored using human neural cells for applications within the nervous system.

View Article and Find Full Text PDF

Biomimetic nanoparticles aim to effectively emulate the behavior of either cells or exosomes. Leukocyte-based biomimetic nanoparticles, for instance, incorporate cell membrane proteins to transfer the natural tropism of leukocytes to the final delivery platform. However, tuning the protein integration can affect the behavior of these nanoparticles and alter their efficacy.

View Article and Find Full Text PDF

Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs).

View Article and Find Full Text PDF

Ponatinib (Pon) is a multi-tyrosine kinase inhibitor that demonstrated high efficiency for treating cancer. However, severe side effects caused by Pon off-targeting effects prevent its extensive use. Using our understanding into the mechanisms by which Pon is transported by bovine serum albumin in the blood, we have successfully encapsulated Pon into a biomimetic nanoparticle (NP).

View Article and Find Full Text PDF

The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature.

View Article and Find Full Text PDF

In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer.

View Article and Find Full Text PDF

Pancreatic cancers, both adenocarcinomas and endocrine tumors are characterized by varying levels of aberrant angiogenesis and fibrotic microenvironment. The difficulty to deliver drugs and treat the disease has been attributed in part to the vascular architecture and tissue/ECM density. Here we present longitudinal three-dimensional intravital imaging of vascular and tumor microenvironment remodeling in spontaneous transgenic tumors (RIP1-Tag2 insulinomas) and orthotopically injected tumors (KPC adenocarcinomas).

View Article and Find Full Text PDF

Rationale: Through localized delivery of rapamycin via a biomimetic drug delivery system, it is possible to reduce vascular inflammation and thus the progression of vascular disease.

Objective: Use biomimetic nanoparticles to deliver rapamycin to the vessel wall to reduce inflammation in an in vivo model of atherosclerosis after a short dosing schedule.

Methods And Results: Biomimetic nanoparticles (leukosomes) were synthesized using membrane proteins purified from activated J774 macrophages.

View Article and Find Full Text PDF

Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site.

View Article and Find Full Text PDF

Despite numerous advances in medical treatment, sepsis remains one of the leading causes of death worldwide. Sepsis is characterized by the involvement of all organs and tissues as a consequence of blood poisoning, resulting in organ failure and eventually death. Effective treatment remains an unmet need and novel approaches are urgently needed.

View Article and Find Full Text PDF

Lipid nanoparticles are used widely as anticancer drug and gene delivery systems. Internalizing into the target cell is a prerequisite for the proper activity of many nanoparticulate drugs. We show here, that the lipid composition of a nanoparticle affects its ability to internalize into triple-negative breast cancer cells.

View Article and Find Full Text PDF

Acidic pH in the tumor microenvironment is associated with cancer metabolism and creates a physiological barrier that prevents from drugs to penetrate cells. Specifically, ionizable weak-base drugs, such as doxorubicin, freely permeate membranes in their uncharged form, however, in the acidic tumor microenvironment these drugs become charged and their cellular permeability is retarded. In this study, 100-nm liposomes loaded with sodium bicarbonate were used as adjuvants to elevate the tumor pH.

View Article and Find Full Text PDF

As the world population grows, there is a need for efficient agricultural technologies to provide global food requirements and reduce environmental toll. In medicine, nanoscale drug delivery systems grant improved therapeutic precision by overcoming biological barriers and enhancing drug targeting to diseased tissues. Here, we loaded nanoscale drug-delivery systems with agricultural nutrients, and applied them to the leaves of tomato plants.

View Article and Find Full Text PDF

Surgical blades are common medical tools. However, blades cannot distinguish between healthy and diseased tissue, thereby creating unnecessary damage, lengthening recovery, and increasing pain. We propose that surgical procedures can rely on natural tissue remodeling tools-enzymes, which are the same tools our body uses to repair itself.

View Article and Find Full Text PDF

Synthetic cells, artificial cell-like particles, capable of autonomously synthesizing RNA and proteins based on a DNA template, are emerging platforms for studying cellular functions and for revealing the origins-of-life. Here, it is shown for the first time that artificial lipid-based vesicles, containing the molecular machinery necessary for transcription and translation, can be used to synthesize anticancer proteins inside tumors. The synthetic cells are engineered as stand-alone systems, sourcing nutrients from their biological microenvironment to trigger protein synthesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1nq83ps9292sb2qo2dp29dnh9hob5gp8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once