Diffusion magnetic resonance imaging (dMRI) is a versatile imaging technique that has gained popularity thanks to its sensitive ability to measure displacement of water molecules within a living tissue on a micrometer scale. Although dMRI has been around since the early 1990s, its applications are constantly evolving, primarily regarding the inference of structural connectomics from nerve fiber trajectories. However, these applications require expertise in image processing and statistics, and it can be difficult for a newcomer to choose an appropriate pipeline to fit their research needs, not least because dMRI is such a flexible methodology that dozens of acquisition and analysis pipelines have been developed over the years.
View Article and Find Full Text PDFBrain function does not emerge from isolated activity, but rather from the interactions and exchanges between neural elements that form a network known as the connectome. The human connectome consists of structural and functional aspects. The structural connectome (SC) represents the anatomical connections, and the functional connectome represents the resulting dynamics that emerge from this arrangement of structures.
View Article and Find Full Text PDFThe brain connectome is an embedded network of anatomically interconnected brain regions, and the study of its topological organization in mammals has become of paramount importance due to its role in scaffolding brain function and behavior. Unlike many other observable networks, brain connections incur material and energetic cost, and their length and density are volumetrically constrained by the skull. Thus, an open question is how differences in brain volume impact connectome topology.
View Article and Find Full Text PDFThe laminar microstructure of the cerebral cortex has distinct anatomical characteristics of the development, function, connectivity, and even various pathologies of the brain. In recent years, multiple neuroimaging studies have utilized magnetic resonance imaging (MRI) relaxometry to visualize and explore this intricate microstructure, successfully delineating the cortical laminar components. Despite this progress, T1 is still primarily considered a direct measure of myeloarchitecture (myelin content), rather than a probe of tissue cytoarchitecture (cellular composition).
View Article and Find Full Text PDFDespite great progress in uncovering the complex connectivity patterns of the human brain over the last two decades, the field of connectomics still experiences a bias in its viewpoint of the cerebral cortex. Due to a lack of information regarding exact end points of fiber tracts inside cortical gray matter, the cortex is commonly reduced to a single homogenous unit. Concurrently, substantial developments have been made over the past decade in the use of relaxometry and particularly inversion recovery imaging for exploring the laminar microstructure of cortical gray matter.
View Article and Find Full Text PDFCan one have a phenomenal experience to which one does not have access? That is, can you experience something without knowing? The dissociation between phenomenal (P) and access (A) consciousness is widely debated. A major challenge to the supporters of this dissociation is the apparent inability to experimentally demonstrate that P-without-A consciousness exists; once participants report having a P-experience, they already have access to it. Thus, all previous empirical support for this dissociation is indirect.
View Article and Find Full Text PDFIn this paper we demonstrate a generalized and simplified pipeline called axonal spectrum imaging (AxSI) for in-vivo estimation of axonal characteristics in the human brain. Whole-brain estimation of the axon diameter, in-vivo and non-invasively, across all fiber systems will allow exploring uncharted aspects of brain structure and function relations with emphasis on connectivity and connectome analysis. While axon diameter mapping is important in and of itself, its correlation with conduction velocity will allow, for the first time, the explorations of information transfer mechanisms within the brain.
View Article and Find Full Text PDFHearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it.
View Article and Find Full Text PDFNetwork models of anatomical connections allow for the extraction of quantitative features describing brain organization, and their comparison across brains from different species. Such comparisons can inform our understanding of between-species differences in brain architecture and can be compared to existing taxonomies and phylogenies. Here we performed a quantitative comparative analysis using the MaMI database (Tel Aviv University), a collection of brain networks reconstructed from diffusion MRI spanning 125 species and 12 taxonomic orders or superorders.
View Article and Find Full Text PDFMammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle to the comparison of neural architectures has been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another.
View Article and Find Full Text PDFCompare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Twenty-eight Y ( = 14, 26.
View Article and Find Full Text PDFThe human connectome is the complete structural description of the network of connections and elements that form the 'wiring diagram' of the brain. Due to the current scarcity of information regarding laminar end points of white matter tracts inside cortical grey matter, tractography remains focused on cortical partitioning into regions, while ignoring radial partitioning into laminar components. To overcome this biased representation of the cortex as a single homogenous unit, we use a recent data-derived model of cortical laminar connectivity, which has been further explored and corroborated in the macaque brain by comparison to published studies.
View Article and Find Full Text PDFThe laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research on the cortical layers is done with the aid of ex vivo histology, there have been recent attempts to use magnetic resonance imaging (MRI) with potential in vivo applications. However, the high-resolution MRI technology and protocols required for such studies are neither common nor practical.
View Article and Find Full Text PDFCell therapy using induced pluripotent stem cell-derived neurons is considered a promising approach to regenerate the injured spinal cord (SC). However, the scar formed at the chronic phase is not a permissive microenvironment for cell or biomaterial engraftment or for tissue assembly. Engineering of a functional human neuronal network is now reported by mimicking the embryonic development of the SC in a 3D dynamic biomaterial-based microenvironment.
View Article and Find Full Text PDFWilliams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls.
View Article and Find Full Text PDFThe connectome of the brain has a great impact on the function of the brain as the structure of the connectome affects the speed and efficiency of information transfer. As a highly energy-consuming organ, an efficient network structure is essential. A previous study has shown consistent overall brain connectivity across a large variety of species.
View Article and Find Full Text PDFIn 1991, Felleman and Van Essen published their seminal study regarding hierarchical processing in the primate cerebral cortex. Their work encompassed a widescale analysis of connections reported through tracing between 35 regions in the macaque visual cortex, extending from cortical regions to the laminar level. In this work, we revisit laminar-level connectivity in the macaque brain using a whole-brain MRI-based approach.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) outbreak introduced unprecedented health-risks, as well as pressure on the economy, society, and psychological well-being due to the response to the outbreak. In a preregistered study, we hypothesized that the intense experience of the outbreak potentially induced stress-related brain modifications in the healthy population, not infected with the virus. We examined volumetric changes in 50 participants who underwent MRI scans before and after the COVID-19 outbreak and lockdown in Israel.
View Article and Find Full Text PDFThe intervertebral disc's (IVD) annulus fibrosus (AF) retains the hydrostatic pressure of the nucleus pulposus (NP), controls the range of motion, and maintains the integrity of the motion segment. The microstructure of the AF is not yet fully understood and quantitative characterization is lacking, leaving a caveat in modern medicine's ability to prevent and treat disc failure (e.g.
View Article and Find Full Text PDFPurpose: Recent research in epilepsy patients confirms our understanding of epilepsy as a network disorder with widespread cortical compromise. Here, we aimed to investigate the neocortical laminar architecture in patients with focal cortical dysplasia (FCD) and periventricular nodular heterotopia (PNH) using clinically feasible 3 T MRI.
Methods: Eighteen epilepsy patients (FCD and PNH groups; n = 9 each) and age-matched healthy controls (n = 9) underwent T1 relaxation 3 T MRI, from which component probability T1 maps were utilized to extract sub-voxel composition of 6 T1 cortical layers.
Loss of cognitive function with aging is a complex and poorly understood process. Recently, clinical research has linked the occurrence of cortical microinfarcts to cognitive decline. Cortical microinfarcts form following the occlusion of penetrating vessels and are considered to be restricted to the proximity of the occluded vessel.
View Article and Find Full Text PDFOver the past two centuries, great scientific efforts have been spent on deciphering the structure and function of the cerebral cortex using a wide variety of methods. Since the advent of MRI neuroimaging, significant progress has been made in imaging of global white matter connectivity (connectomics), followed by promising new studies regarding imaging of grey matter laminar compartments. Despite progress in both fields, there still lacks mesoscale information regarding cortical laminar connectivity that could potentially bridge the gap between the current resolution of connectomics and the relatively higher resolution of cortical laminar imaging.
View Article and Find Full Text PDFOver 100 years ago, Ramon y Cajal hypothesized that two forces played a role in the evolution of mammalian brain connectivity: minimizing wiring costs and maximizing conductivity speed. Using diffusion MRI, we reconstructed the brain connectomes of 123 mammalian species. Network analysis revealed that both connectivity and the wiring cost are conserved across mammals.
View Article and Find Full Text PDF