Humans and other organisms make decisions choosing between different options, with the aim to maximize the reward and minimize the cost. The main theoretical framework for modeling the decision-making process has been based on the highly successful drift-diffusion model, which is a simple tool for explaining many aspects of this process. However, new observations challenge this model.
View Article and Find Full Text PDFLearning from appetitive and aversive stimuli involves interactions between the prefrontal cortex and subcortical structures. Preclinical and theoretical studies indicate that inhibition is essential in regulating the relevant neural circuitry. Here, we demonstrate that GABA, the main inhibitory neurotransmitter in the central nervous system, differentially affects how the dACC interacts with subcortical structures during appetitive and aversive learning in humans.
View Article and Find Full Text PDFJ Magn Reson Imaging
February 2025
Purpose: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum.
View Article and Find Full Text PDFConsolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight.
View Article and Find Full Text PDFPurpose: The interest in applying and modeling dynamic MRS has recently grown. 2D modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to 1D modeling of the averaged spectrum.
View Article and Find Full Text PDFPracticing motor skills stabilizes and strengthens motor memories by repeatedly reactivating and reconsolidating them. The conventional view, by which a repetitive practice is required for substantially improving skill performance, has been recently challenged by behavioral experiments, in which even brief reactivations of the motor memory have led to significant improvements in skill performance. However, the mechanisms which facilitate brief reactivation-induced skill improvements remain elusive.
View Article and Find Full Text PDFBrain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations.
View Article and Find Full Text PDFTemperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T , T , proton density, and diffusion).
View Article and Find Full Text PDFTemperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T\textsubscript{1}, T\textsubscript{2}, proton density, diffusion and more).
View Article and Find Full Text PDFPurpose: Conventional sequences are static in nature, fixing measurement parameters in advance in anticipation of a wide range of expected tissue parameter values. We set out to design and benchmark a new, personalized approach-termed adaptive MR-in which incoming subject data is used to update and fine-tune the pulse sequence parameters in real time.
Methods: We implemented an adaptive, real-time multi-echo (MTE) experiment for estimating T s.
Objectives: To investigate the clinical relevance of the relaxation times of lipids within breast cancer and normal fibroglandular tissue in vivo, using magnetic resonance spectroscopic fingerprinting (MRSF).
Methods: Twelve patients with biopsy-confirmed breast cancer and 14 healthy controls were prospectively scanned at 3 T using a protocol consisting of diffusion tensor imaging (DTI), MRSF, and dynamic contrast-enhanced (DCE) MRI. Single-voxel MRSF data was recorded from the tumor (patients) - identified using DTI - or normal fibroglandular tissue (controls), in under 20 s.
Purpose: Many MRS paradigms produce 2D spectral-temporal datasets, including diffusion-weighted, functional, and hyperpolarized and enriched (carbon-13, deuterium) experiments. Conventionally, temporal parameters-such as T , T , or diffusion constants-are assessed by first fitting each spectrum independently and subsequently fitting a temporal model (1D fitting). We investigated whether simultaneously fitting the entire dataset using a single spectral-temporal model (2D fitting) would improve the precision of the relevant temporal parameter.
View Article and Find Full Text PDFThe importance of the excitatory-inhibitory (E/I) balance in a wide range of cognitive and behavioral processes has prompted a commensurate interest in methods for reliably quantifying it. Proton Magnetic Resonance Spectroscopy (H-MRS) remains the only method capable of safely and non-invasively measuring the concentrations of the brain's major excitatory (glutamate) and inhibitory (γ-aminobutyric-acid, GABA) neurotransmitters in-vivo. MRS relies on spectral Mescher-Garwood (MEGA) editing techniques at 3T to distinguish GABA from its overlapping resonances.
View Article and Find Full Text PDFH-MRSI is commonly performed with gradient phase encoding, due to its simplicity and minimal radio frequency (RF) heating (specific absorption rate). Its two well-known main problems-(i) "voxel bleed" due to the intrinsic point-spread function, and (ii) chemical shift displacement error (CSDE) when slice-selective RF pulses are used, which worsens with increasing volume of interest (VOI) size-have long become accepted as unavoidable. Both problems can be mitigated with Hadamard multislice RF encoding.
View Article and Find Full Text PDFFor the spectroscopic assessment of brain disorders that require large-volume coverage, the requirements of RF performance and field homogeneity are high. For epilepsy, this is also challenging given the inter-patient variation in location, severity and subtlety of anatomical identification and its tendency to involve the temporal region. We apply a targeted method to examine the utility of large-volume MR spectroscopic imaging (MRSI) in surgical epilepsy patients, implementing a two-step acquisition, comprised of a 3D acquisition to cover the fronto-parietal regions, and a contiguous parallel two-slice Hadamard-encoded acquisition to cover the temporal-occipital region, both with T /T = 2000/40 ms and matched acquisition times.
View Article and Find Full Text PDFRecent implications of glutamatergic signaling in a wide range of psychiatric disorders has highlighted the need to study the dynamics of glutamate (Glu) in the brain outside of steady state. A promising modality for doing so is functional Magnetic Resonance Spectroscopy (fMRS). Recent human studies at high magnetic fields (7T) have reported small but consistent changes in metabolite concentrations, in particular a 2-4% increase in Glu during visual and motor stimulation.
View Article and Find Full Text PDFB field maps are used ubiquitously in neuroimaging, in disciplines ranging from magnetic resonance spectroscopy to temperature mapping and susceptibility-weighted imaging. Most B maps are acquired using standard gradient-echo-based vendor-provided sequences, often comprised of two echoes spaced a few milliseconds apart. Herein, we analyze the optimal spacing of echo times, defined as those maximizing precision-minimizing the standard deviation-for a fixed total acquisition time.
View Article and Find Full Text PDFClinical magnetic resonance spectroscopy (MRS) mainly concerns itself with the quantification of metabolite concentrations. Metabolite relaxation values, which reflect the microscopic state of specific cellular and sub-cellular environments, could potentially hold additional valuable information, but are rarely acquired within clinical scan times. By varying the flip angle, repetition time and echo time in a preset way (termed a schedule), and matching the resulting signals to a pre-generated dictionary - an approach dubbed magnetic resonance fingerprinting - it is possible to encode the spins' relaxation times into the acquired signal, simultaneously quantifying multiple tissue parameters for each metabolite.
View Article and Find Full Text PDFPurpose: Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T ) and transverse (T ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders.
Theory And Methods: A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest.
Purpose: To design and implement a multislice MRSI method for fast spectroscopic imaging, using a modified version of echo planar spectroscopic imaging (EPSI) that offers higher spectral width and/or shorter scan time.
Methods: Echo planar spectroscopic imaging suffers from inconsistencies between readout lines acquired with gradients of opposite signs, which has typically been addressed by reconstructing the "positive" and "negative" data sets separately and averaging the two. Nevertheless, consistency between the readout lines of each phase encode can be achieved by interposing the EPSI readouts with alternating "blipped" phase-encode gradients.
Background: 3D brain proton MR spectroscopic imaging ( H MRSI) facilitates simultaneous metabolic profiling of multiple loci, at higher, sub-1 cm , spatial resolution than single-voxel H MRS with the ability to separate tissue-type partial volume contribution(s).
Purpose: To determine if: 1) white matter (WM) damage in mild traumatic brain injury (mTBI) is homogeneously diffuse, or if specific regions are more affected; 2) partial-volume-corrected, structure-specific H MRSI voxel averaging is sensitive to regional WM metabolic abnormalities.
Study Type: Retrospective cross-sectional cohort study.
Purpose: Multi-echo spin-echo (MESE) protocol is the most effective tool for mapping T relaxation in vivo. Still, MESE extensive use of radiofrequency pulses causes magnetization transfer (MT)-related bias of the water signal, instigated by the presence of macromolecules (MMP). Here, we analyze the effects of MT on MESE signal, alongside their impact on quantitative T measurements.
View Article and Find Full Text PDFThe dorsal anterior cingulate cortex (dACC) is crucial for motivation, reward- and error-guided decision-making, yet its excitatory and inhibitory mechanisms remain poorly explored in humans. In particular, the balance between excitation and inhibition (E/I), demonstrated to play a role in animal studies, is difficult to measure in behaving humans. Here, we used functional magnetic-resonance-spectroscopy (H-fMRS) to measure the brain's major inhibitory (GABA) and excitatory (Glutamate) neurotransmitters during reinforcement learning with three different conditions: high cognitive load (uncertainty); probabilistic discrimination learning; and a control null-condition.
View Article and Find Full Text PDFMagnetic resonance fingerprinting has been proposed as a method for undersampling k-space while simultaneously yielding multiparametric tissue maps. In the context of single voxel spectroscopy, fingerprinting can provide a unified framework for parameter estimation. We demonstrate the utility of such a magnetic resonance spectroscopic fingerprinting (MRSF) framework for simultaneously quantifying metabolite concentrations, T and T relaxation times and transmit inhomogeneity for major singlets of N-acetylaspartate, creatine and choline.
View Article and Find Full Text PDF