Publications by authors named "Assaf Manor"

The challenge in solar energy today is not the cost of photovoltaic (PV) electricity generation, already competing with fossil fuel prices, but rather utility-scale energy storage and flexibility in supply. Low-cost thermal energy storage (TES) exists but relies on expensive heat engines. Here, we introduce the concept of luminescent solar power (LSP), where sunlight is absorbed in a photoluminescent (PL) absorber, followed by red-shifted PL emission matched to an adjacent PV cell's band edge.

View Article and Find Full Text PDF

The maximal Shockley-Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures.

View Article and Find Full Text PDF

Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark.

View Article and Find Full Text PDF