The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis.
View Article and Find Full Text PDFMycoplasmas are atypical bacteria with small genomes that necessitate colonization of their respective animal or plant hosts as obligate parasites, whether as pathogens, or commensals. Some can grow axenically in specialized complex media yet show only host-cell-dependent growth in cell culture, where they can survive chronically and often through interactions involving surface colonization or internalization. To develop a mycoplasma-based system to identify genes mediating such interactions, we exploited genetically tractable strains of the goat pathogen () with synthetic designer genomes representing the complete natural organism (minus virulence factors; JCVI-syn1.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the causative agent of African swine fever (ASF), resulting in up to 100% mortality in pigs. Although endemic in most sub-Saharan African countries, where all known ASFV genotypes have been reported, the disease has caused pandemics of significant economic impact in Eurasia, and no vaccines or therapeutics are available to date. In endeavors to develop live-attenuated vaccines against ASF, deletions of several of the ~170 ASFV genes have shown contrasting results depending on the genotype of the investigated ASFV.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein.
View Article and Find Full Text PDFUnlabelled: The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against SARS-CoV-2, the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the Spike protein.
View Article and Find Full Text PDFStaphylococcus aureus is an opportunistic pathogen that causes a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but these only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but new methods are needed for the efficient transformation of large DNA molecules into S.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of a contagious and fatal disease of domestic pigs that has significant economic consequences for the global swine industry. Due to the lack of effective treatment and vaccines against African swine fever, there is an urgent need to leverage cutting-edge technologies and cost-effective approaches for generating and purifying recombinant virus to fast-track the development of live-attenuated ASFV vaccines. Here, we describe the use of the CRISPR/Cas9 gene editing and a cost-effective cloning system to produce recombinant ASFVs.
View Article and Find Full Text PDFGenomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized.
View Article and Find Full Text PDFGlobal transposon mutagenesis is a valuable tool for identifying genes required for cell viability. Here we present a global analysis of the orientation of viable Tn-Puro (Tn-puromycin resistance) insertions into the near-minimal bacterial genome of JCVI-syn2.0.
View Article and Find Full Text PDFMycoplasmas are the smallest free-living organisms and cause a number of economically important diseases affecting humans, animals, insects, and plants. Here, we demonstrate that highly virulent subspecies () can be fully attenuated targeted deletion of non-essential genes encoding, among others, potential virulence traits. Five genomic regions, representing approximately 10% of the original genome, were successively deleted using as an engineering platform.
View Article and Find Full Text PDFBacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery.
View Article and Find Full Text PDFWe used whole-genome design and complete chemical synthesis to minimize the 1079-kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell.
View Article and Find Full Text PDFThe availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast.
View Article and Find Full Text PDFWe report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the κ and λ light chains.
View Article and Find Full Text PDFUnderstanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology that computational approaches are poised to tackle. We report a whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium that includes all of its molecular components and their interactions. An integrative approach to modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally different cellular processes and experimental measurements.
View Article and Find Full Text PDFMost gene knockouts in mycoplasmas are achieved through labor-intensive transposon mutagenesis. Here, we describe a method for making targeted deletions in Mycoplasma pneumoniae by use of homologous recombination. In this method, M.
View Article and Find Full Text PDFWe report the design, synthesis, and assembly of the 1.08-mega-base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M.
View Article and Find Full Text PDFMost microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules.
View Article and Find Full Text PDFWe recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2009
Over the past several years, significant advances have been made in the molecular genetics of the Mollicutes (the simplest cells that can be grown in axenic culture). Nevertheless, a number of basic molecular tools are still required before genetic manipulations become routine. Here we describe the development of a new dominant selectable marker based on the enzyme puromycin-N-acetyltransferase from Streptomyces alboniger.
View Article and Find Full Text PDFMycoplasma genitalium has the smallest genome of any organism that can be grown in pure culture. It has a minimal metabolism and little genomic redundancy. Consequently, its genome is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life.
View Article and Find Full Text PDFThe microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and β-glucuronidase.
View Article and Find Full Text PDFA protocol for the Agrobacterium-mediated transformation of tomatillo was developed. Up to 40 transgenic plants could be obtained in experiments using 60 cotyledon expiants. The transformed nature of the regenerated plants was confirmed by NPT II and Southern blot hybridization analysis.
View Article and Find Full Text PDF