Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer.
View Article and Find Full Text PDFIntracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction.
View Article and Find Full Text PDFHematopoiesis is based on the existence of hematopoietic stem cells (HSC) with the capacity to self-proliferate and self-renew or to differentiate into specialized cells. The hematopoietic niche is the essential microenvironment where stem cells reside and integrate various stimuli to determine their fate. Recent studies have identified niche containing high level of calcium (Ca) suggesting that HSCs are sensitive to Ca.
View Article and Find Full Text PDFMitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms.
View Article and Find Full Text PDF