Publications by authors named "Asplund M"

Despite its high prevalence, individuals suffering from skin-picking disorder (SPD) face limited access to treatment due to several factors, including geographical and economic barriers, as well as a shortage of properly trained therapists. Offering Internet-delivered therapy could be a solution to these barriers. This study aimed to evaluate the efficacy of therapist-guided Internet-delivered acceptance-enhanced behavior therapy (iBT) for SPD compared to a wait-list control condition.

View Article and Find Full Text PDF

Seagrass meadows are vital blue carbon habitats, with sedimentary organic carbon (OC) originating from both the seagrass itself and external sources. In this study, lipid biomarkers (n-alkanes), a well-known proxy for tracing OC sources, were used to indicate seagrass presence in sediment records and to correlate with sedimentary OC in cold-temperate seagrass (Zostera marina) sediments. We calculated a Zostera-ratio (seagrass/algae and terrestrial plants-ratio) using identified seagrass biomass n-alkanes (C, C, C, C, C) as a fingerprint for seagrass-derived OC.

View Article and Find Full Text PDF

Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS).

View Article and Find Full Text PDF

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes.

View Article and Find Full Text PDF

Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro.

View Article and Find Full Text PDF

The photophysics of thiobases-nucleobases in which one or more oxygen atoms are replaced with sulfur atoms- vary greatly depending on the location of sulfonation. Not only are direct dynamics of a neutral thiobase impacted, but also the dynamics of excess electron accommodation. In this work, time-resolved photoelectron spectroscopy is used to measure binary anionic clusters of iodide and 4-thiouracil, I- · 4TU.

View Article and Find Full Text PDF

Glyoxal (CHOCHO) is a trace gas in the atmosphere, often used as an indicator of biogenic emissions. It is frequently compared to formaldehyde concentrations, which serve as indicators of anthropogenic emissions, to gain insights into the characteristics of the environmental source. This study employed broadband cavity-enhanced absorption spectroscopy to detect gaseous CHOCHO, methylglyoxal, and NO.

View Article and Find Full Text PDF

Electrical stimulation of brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects.

View Article and Find Full Text PDF

We report on the design, construction, and testing of a high-speed rotor intended for use in hypervelocity microparticle impact studies. The rotor is based on a four-wing design to provide rotational stability and includes flat "paddle" impact surfaces of ∼0.5 cm2 at the tips of each wing.

View Article and Find Full Text PDF

There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation.

View Article and Find Full Text PDF

Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation.

View Article and Find Full Text PDF

Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes.

View Article and Find Full Text PDF

. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels.

View Article and Find Full Text PDF

Soft robotics facilitates the deployment of large radial electrode arrays on the brain cortex through small craniotomies.

View Article and Find Full Text PDF

Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity.

View Article and Find Full Text PDF

Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic wound healing models of human keratinocytes, the most prevalent cell type of the skin.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood.

View Article and Find Full Text PDF

Proper analysis of vibrational sum-frequency generation (VSFG) spectra requires that the nonresonant contribution be dealt with correctly. This work shows that the temporal profile of the nonresonant SFG response varies with crystal facing and sample orientation for single-crystal Si and is significantly different than what is observed with polycrystalline Au. These considerations will affect the use of time-delay methods to experimentally suppress the nonresonant signal in broadband SFG measurements.

View Article and Find Full Text PDF

Trichotillomania (TTM) and skin-picking disorder (SPD) are two clinically related conditions that can be successfully treated with behavior therapy (BT). There is some research indicating that BT for TTM and SPD can be efficacious also when delivered online instead of face-to-face, however, previous studies have mainly used self-recruited samples in a university context and it is unclear if the effects of online BT also extend to regular psychiatric patients. The current study set out to investigate if internet-delivered BT (I-BT) is a feasible, acceptable and preliminarily efficacious treatment for patients in a routine psychiatric setting.

View Article and Find Full Text PDF

The aim of this study was to investigate the early-life development of the skin microbiome in atopic dermatitis. Nineteen infants with atopic dermatitis and 19 healthy infants were evaluated 3 times, at 3 months intervals, within the first 30 months of life. Tape-strips were collected from volar forearms, cheeks, and eczema lesions, and the skin microbiome was assessed by 16S rRNA sequencing.

View Article and Find Full Text PDF

The dynamics of low energy electron attachment to the thio-substituted uracil analog 2-thiouracil are investigated using time-resolved photoelectron spectroscopy (TRPES) of iodide-2-thiouracil (I·2TU) binary clusters. In these experiments, the anions are excited at pump energies of 4.16 and 4.

View Article and Find Full Text PDF

Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord.

View Article and Find Full Text PDF

Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (C) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves.

View Article and Find Full Text PDF