B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG, IgH mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH meninges and by CD4 T helper 17 (Th17) cells in the CNS.
View Article and Find Full Text PDFSex differences in multiple sclerosis (MS) incidence and severity have long been recognized. However, the underlying cellular and molecular mechanisms for why male sex is associated with more aggressive disease remain poorly defined. Using a T cell adoptive transfer model of chronic experimental autoimmune encephalomyelitis (EAE), we find that male Th17 cells induce disease of increased severity relative to female Th17 cells, irrespective of whether transferred to male or female recipients.
View Article and Find Full Text PDFThe T cell response to central nervous system (CNS) antigen in experimental autoimmune encephalomyelitis (EAE) permits one to model the immune aspects of multiple sclerosis. 1C6 transgenic mice on the non-obese diabetic (NOD) background possess a class II-restricted T cell receptor (TcR; Vα5-Vβ7) specific for the encephalitogenic peptide myelin oligodendrocyte glycoprotein (MOG). It remains to be determined what role is played by allelic inclusion in shaping the TcR repertoire of these mice.
View Article and Find Full Text PDFVitiligo is an acquired depigmentation disorder characterized by the loss of functional melanocytes from the epidermis. Two major theories of vitiligo pathogenesis include autoimmunity and oxidative stress-mediated toxicity in melanocytes. The present study aimed to evaluate both the hypotheses in vitiligo patients and to investigate their role in the disease onset and progression.
View Article and Find Full Text PDF