Publications by authors named "Asmahan AbuArish"

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and cigarette smoke is the main risk factor. Detecting its earliest stages and preventing a decline in lung function are key goals. The pathogenesis of COPD is complex but has some similarities to cystic fibrosis (CF), a disease caused by mutations in the gene.

View Article and Find Full Text PDF

Membrane proteins often cluster in nanoscale membrane domains (lipid rafts) that coalesce into ceramide-rich platforms during cell stress, however the clustering mechanisms remain uncertain. The cystic fibrosis transmembrane conductance regulator (CFTR), which is mutated in cystic fibrosis (CF), forms clusters that are cholesterol dependent and become incorporated into long-lived platforms during hormonal stimulation. We report here that clustering does not involve known tethering interactions of CFTR with PDZ domain proteins, filamin A or the actin cytoskeleton.

View Article and Find Full Text PDF

The airway mucosal microenvironment is crucial for host defense against inhaled pathogens but remains poorly understood. We report here that the airway surface normally undergoes surprisingly large excursions in pH during breathing that can reach pH 9.0 during inhalation, making it the most alkaline fluid in the body.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is a tightly regulated anion channel that mediates secretion by epithelia and is mutated in the disease cystic fibrosis. CFTR forms macromolecular complexes with many proteins; however, little is known regarding its associations with membrane lipids or the regulation of its distribution and mobility at the cell surface. We report here that secretagogues (agonists that stimulate secretion) such as the peptide hormone vasoactive intestinal peptide (VIP) and muscarinic agonist carbachol increase CFTR aggregation into cholesterol-dependent clusters, reduce CFTR lateral mobility within and between membrane microdomains, and trigger the fusion of clusters into large (3.

View Article and Find Full Text PDF

Bicarbonate facilitates mucin unpacking and bacterial killing; however, its transport mechanisms in the airways are not well understood. cAMP stimulates anion efflux through the cystic fibrosis (CF) transmembrane conductance regulator (CFTR; ABCC7) anion channel, and this is defective in CF. The anion exchanger pendrin (SLC26A4) also mediates HCO efflux and is upregulated by proinflammatory cytokines.

View Article and Find Full Text PDF

Bicarbonate plays an important role in airway host defense, however, its transport mechanisms remain uncertain. Here we examined the relative contributions of the anion channel CFTR (cystic fibrosis transmembrane conductance regulator, ABCC7) and the anion exchanger pendrin (SLC26A4) to HCO secretion by the human airway cell line Calu-3. Pendrin and CFTR were both detected in parental Calu-3 cells, although mRNA and protein expression appeared higher for CFTR than for pendrin.

View Article and Find Full Text PDF

Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series.

View Article and Find Full Text PDF

Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation.

View Article and Find Full Text PDF

Unlabelled: Cystic fibrosis is the most common genetic disease, in which symptoms may be alleviated but not fully eliminated. Ceramides have long been implicated in the inflammatory etiology of cystic fibrosis, with contradicting reports with regards to their role. Recently, significant biological and biophysical differences have been observed between long- and very long-chain ceramides.

View Article and Find Full Text PDF

In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells.

View Article and Find Full Text PDF

The Bicoid (Bcd) morphogen is essential for pattern formation in fruit flies. It forms an exponential concentration gradient along the embryo AP axis and turns on cascades of target genes in distinct anterior domains. The most commonly accepted model for gradient formation assumes that Bcd travels by simple diffusion and is uniformly degraded across syncytial embryos, yet several recent studies have challenged these ideas.

View Article and Find Full Text PDF

It is widely accepted that morphogenetic gradients determine cell identity by concentration-dependent activation of target genes. How precise is each step in the gene expression process that acts downstream of morphogens, however, remains unclear. The Bicoid morphogen is a transcription factor directly activating its target genes and provides thus a simple system to address this issue in a quantitative manner.

View Article and Find Full Text PDF

The GTPase Ran is a key regulator of molecular transport through nuclear pore complex (NPC) channels. To analyze the role of Ran in its nuclear transport function, we used several quantitative fluorescence techniques to follow the distribution and dynamics of an enhanced yellow fluorescent protein (EYFP)-Ran in HeLa cells. The diffusion coefficient of the majority of EYFP-Ran molecules throughout the cells corresponded to an unbound state, revealing the remarkably dynamic Ran regulation.

View Article and Find Full Text PDF

Many essential processes in eukaryotic cells depend on regulated molecular exchange between its two major compartments, the cytoplasm and the nucleus. In general, nuclear import of macromolecular complexes is dependent on specific peptide signals and their recognition by receptors that mediate translocation through the nuclear pores. Here we address the question of how protein products bearing such nuclear localization signals arrive at the nuclear membrane before import, i.

View Article and Find Full Text PDF

Agrobacterium tumefaciens infects plant cells by a unique mechanism involving an interkingdom genetic transfer. A single-stranded DNA substrate is transported across the two cell walls along with the bacterial virulence proteins VirD2 and VirE2. A single VirD2 molecule covalently binds to the 5'-end of the single-stranded DNA, while the VirE2 protein binds stoichiometrically along the length of the DNA, without sequence specificity.

View Article and Find Full Text PDF

Compartmentalization of the cytoplasm by membranes should have a strong influence on the diffusion of macromolecules inside a cell, and we have studied how this could be reflected in fluorescence correlation spectroscopy (FCS) experiments. We derived the autocorrelation function measured by FCS for fluorescent particles diffusing close to a soft membrane, and show it to be the sum of two contributions: short timescale correlations come from the diffusion of the particles (differing from free diffusion because of the presence of an obstacle), whereas long timescale correlations arise from fluctuations of the membrane itself (which create intensity fluctuations by modulating the number of detected particles). In the case of thermal fluctuations this second type of correlation depends on the elasticity of the membrane.

View Article and Find Full Text PDF