Background: Chromenes are a wide group of natural compounds that can be synthesized chemically. The chromen-4-one nucleus acts as a skeleton for varieties of additional active groups that makes the chromene activity vary between antioxidant and anti-inflammatory agents. In the present study, a newly synthesized chromene compound exhibits different behaviors other than anti-inflammatory and antioxidant activities that it is the first time that a member of chromen-4-one compound can control the cancer progress.
View Article and Find Full Text PDFCancer is the leading cause of death and exhausts human and economic resources for treatment and protection. Zinc oxide nanoparticles play an effective role in tumor treatment but with some cautions, such as overexpression of cytochrome P450, hepatic overload, and the mammalian target of rapamycin pathway resistance. Although lanthanides have antitumor activity, their use is limited.
View Article and Find Full Text PDFRadiotherapy is considered as a primary modality for cancer treatment which accompanied by several side effects. Protection of normal tissues from radiation effects is one of the most significant concerns for researchers. Although many compounds acting as radio protectors, only two compounds were licensed clinically.
View Article and Find Full Text PDFTreatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Recent studies synthesize new quinolone derivatives to satisfy other purposes such as treatment of inflammatory and malignant diseases. The main purpose of the present study is to evaluate the effect of a new quinolone derivative; 2-(1-Ethyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-2-oxoacetic acid (EHQA) and its possible mechanism against gamma radiation (IRR) and cisplatin (Cis) induced nephrotoxicity and neurotoxicity in mice.
View Article and Find Full Text PDF