Publications by authors named "Asmaa I Meky"

Article Synopsis
  • The study focused on creating and testing Cobalt-doped zinc oxide nanoparticles as a photocatalyst for degrading the antibiotic ciprofloxacin (CIPF) under visible LED light.
  • It was found that 10% Cobalt-doped ZnO nanoparticles were the most effective, achieving over 99% degradation of CIPF in just 90 minutes, and maintained their efficiency across three cycles of use.
  • The research also optimized the conditions for maximum degradation efficiency using statistical methods and simulated data using Artificial Neural Networks, achieving a strong correlation for the model’s accuracy.
View Article and Find Full Text PDF

In this research, different Co doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses.

View Article and Find Full Text PDF

Photodegradation is considered a significant method engaged for the elimination of organic pollutants from water. In this work, hydrothermal cobalt-doped zinc oxide nanoparticles (Hy-Co-ZnO NPs) loaded with 5, 10, and 15% cobalt were prepared in a hydrothermal way and were investigated as a photocatalyst for the Ciprofloxacin (CIPF) degradation under visible irradiation using LED-light. Characterization approaches such as FTIR, XRD, XPS, DRS UV-vis spectroscopy, SEM, TEM, BET, EDX and TGA were used for the investigation of the fabricated Hy-Co-ZnO NPs.

View Article and Find Full Text PDF

From the perspective of environmental protection, the highly efficient degradation of antibiotics and organic dyes in wastewater needs to be tackled as soon as possible. In this study, an ecofriendly and green cube-shaped cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs) photocatalyst using Pterocladia Capillacea (P. Capillacea) water extract loaded with 5, 10, and 15% cobalt ions were formed via co-precipitation process to degrade antibiotics.

View Article and Find Full Text PDF