Publications by authors named "Asma Yaghi"

Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract.

View Article and Find Full Text PDF

Unlabelled: COPD is characterized by increased cough, mucus production, and airway inflammation. Beating epithelial cell cilia contribute to mucociliary clearance with ciliary beat frequency (CBF) an important measure of cilia function. However, whether CBF varies with COPD severity is unknown.

View Article and Find Full Text PDF

The present case series describes four patients with asthma, airway hyperresponsiveness and neutrophilic bronchitis who harboured abnormal cystic fibrosis transmembrance conductance regulator (CFTR) gene mutations. It serves both to alert clinicians to consider CFTR-related disease in both young and elderly patients with persistent neutrophilic bronchitis, and to highlight the potential utility of future genetic testing for CFTR abnormalities in patients with asthma and recurrent bronchitis or pansinusitis, and the role of nebulized hypertonic saline as a therapeutic option in these patients.

View Article and Find Full Text PDF

Background: Inhalation of hypertonic saline and mannitol improve mucociliary clearance in patients with bronchiectasis, but little is known about how the relative osmotic strengths of these compounds affect ciliary beat frequency (CBF) of ciliated human bronchial epithelial cells (HBEC). Our aim was to compare in vitro the direct effects of osmotically equivalent solutions on CBF of HBEC.

Methods: HBEC were acutely (10, 30 min) exposed to comparable osmolar solutions of saline (0.

View Article and Find Full Text PDF

Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g.

View Article and Find Full Text PDF

The transcription factor nuclear factor of activated T cells (NFAT) resides in the cytoplasm in resting cells and upon stimulation is dephosphorylated, translocates to the nucleus, and becomes transcriptionally active. NFAT is commonly activated by stimulation of receptors coupled to Ca(2+) mobilization; however, little is known about the regulation of NFAT in pulmonary vascular smooth muscle. The aim of this study was to investigate regulation of NFAT in human and rat intralobar pulmonary artery by two constrictors: phenylephrine (PE) and 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P-450 metabolite formed endogenously in lungs.

View Article and Find Full Text PDF

Recently, we demonstrated that pulmonary CYP2J4 content, a prominent source of EETs and HETEs formation in rat lungs, is reduced in pneumonia. Therefore, the purpose of this study was to determine the role of iNOS-derived NO in reduced pulmonary CYP2J4 protein content and decreased CYP metabolites in pneumonia. Rats were randomized to control, control plus 1400W (iNOS inhibitor), pneumonia, and pneumonia plus 1400W groups.

View Article and Find Full Text PDF

We previously reported that the levels of epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are depressed in microsomes prepared from lungs of rats with acute Pseudomonas pneumonia. We also showed a potential role for cytochrome P-450 (CYP) metabolites of arachidonic acid (AA) in contractile responses of both normal pulmonary arteries and pulmonary arteries from rats with pneumonia. The CYP2J subfamily enzymes (endogenous source of EETs and HETEs) are constitutively expressed in human and rat lungs where they are localized in vascular smooth muscle and endothelium.

View Article and Find Full Text PDF

We investigated the role of K(+) channels in the attenuated pulmonary artery (PA) contractility characteristic of acute Pseudomonas pneumonia. Contractility of PA rings from the lungs of control or pneumonia rats was assessed in vitro by obtaining cumulative concentration-response curves to the contractile agonists KCl, phenylephrine, or PGF(2 alpha) on PA rings before and after treatment with K(+) channel blockers. In rings from pneumonia rats, paxilline (10 microM), tetraethylammonium (2 mM) (blockers of large-conductance Ca(2+)-activated K(+) channels), and glybenclamide (ATP-sensitive K(+) channel blocker, 80 microM) had no significant effect on the attenuated contractile responses to KCl, phenylephrine, and PGF(2 alpha).

View Article and Find Full Text PDF