Realizing the potential of nano-hybrid biomaterials in various applications (nanoprobes to drug delivery), special attention has been devoted towards their synthesis and development. Nonetheless, several questions pertaining to the interface chemistry between the constituent entities (biomolecules and organic/inorganic part) of these hybrids, still remain unresolved. Keeping these unsolved issues in mind, the present theoretical investigation focuses on determining the electronic/physicochemical properties and interactions within gold and silver quantum dot-capped single lipid molecules.
View Article and Find Full Text PDFAs of today, the Si-Be bond remains underexplored in the literature, and therefore its anomalous behavior continues to be an unsolved puzzle to date. Therefore, the present study aims at evaluating the integrity of an unprecedented Si-Be bond within quantum confinement. To accomplish this, first-principles-based calculation are performed on Be-doped silicon clusters with atomic sizes 6, 7, and 10.
View Article and Find Full Text PDFDynamical simulations of molecules and materials have been the route to understand the rearrangement of atoms within them at different temperatures. Born-Oppenheimer molecular dynamical simulations have further helped to comprehend the reaction dynamics at various finite temperatures. We take a case study of SiB and SiB clusters and demonstrate that their finite-temperature behavior is rather mapped to the potential energy surface.
View Article and Find Full Text PDF