In this study, a sustainable method employing concentrated sunlight to achieve environmental remediation of wastewater, contaminated by Ciprofloxacin antibiotic (CIP), is thoroughly investigated. A green ZnO/g-CN nanocomposite (NC) is used as a photocatalyst coating on glass to investigate the inactivation of CIP in water, in a flow-reactor configuration at small-prototype scale (10 liters/h, catalyst area 187.5 cm).
View Article and Find Full Text PDFGreen-synthesized materials and solar concentration technology for advanced oxidation processes (AOPs) offer important opportunities in water remediation by giving value to clean, renewable and potentially low-cost resources. Here, Zinc Oxide (ZnO) nanostructures (NSs) were prepared via a green synthesis method based on garlic bulbs (Allium Sativum) extract (ZnO-Green), resulting in crystalline (wurtzite) nanorods (NRs). ZnO nanoparticles (NPs) were also chemically prepared through a standard co-precipitation (ZnO-Chem) for comparative solar photocatalytic (PC) studies.
View Article and Find Full Text PDF