Traditional antimicrobial antibiotics are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. The antibiotic era is threatened by the ruthless rise of resistance in bacterial infections. A significant role in these resistance profiles is attributed to multidrug efflux pumps.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) is a clinically, genetically and pathologically heterogeneous disorder. Within FTLD with ubiquitin-positive inclusions (FTLD-U), a new pathological subtype named FTLD-FUS was recently found with fused in sarcoma (FUS) positive, TDP-43-negative inclusions, and striking atrophy of the caudate nucleus. The aim of this study was to determine the frequency of FTLD-FUS in our pathological FTLD series, and to describe the clinical, neuroimaging and neuropathological features of FTLD-FUS, especially caudate atrophy.
View Article and Find Full Text PDFFrontotemporal dementia is accompanied by motor neuron disease (FTD + MND) in approximately 10% of cases. There is accumulating evidence for a clinicopathological overlap between FTD and MND based on observations of familial aggregation and neuropathological findings of ubiquitin-positive neuronal cytoplasmatic inclusions (NCI) in lower motor neurons, hippocampus and neocortex in both conditions. Several familial forms exist with different genetic loci and defects.
View Article and Find Full Text PDFMutations in the progranulin (PGRN) gene have recently been identified in frontotemporal lobar degeneration with ubiquitin inclusions linked to chromosome 17q21. We report here the finding of two novel frameshift mutations and three possible pathogenic missense mutations in the PGRN gene. Furthermore, we determined the frequency of PGRN mutations in familial cases recruited from a large population-based study of frontotemporal lobar degeneration carried out in The Netherlands.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2007
Tau mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) are associated with changes in alternative splicing of exon 10. The DeltaK280 mutation in exon 10 is exceptional because in vitro observations suggest a dramatic effect on microtubule binding, enhanced self-aggregation, as well as a decrease of the 4R/3R ratio by the ablation of an exon splicing enhancer element. Using immunohistochemistry, Western blotting, and electron microscopy on brain material with the DeltaK280 mutation, we investigated which of these effects is most dominant in vivo.
View Article and Find Full Text PDF