Genetic heterogeneity in tumors can show a remarkable selectivity when two or more independent genetic events occur in the same gene. This phenomenon, called composite mutation, points toward a selective pressure, which frequently causes therapy resistance to mutation-specific drugs. Since composite mutations have been described to occur in sub-clonal populations, they are not always captured through biopsy sampling.
View Article and Find Full Text PDFPurpose: Combination therapies are a promising approach for improving cancer treatment, but it is challenging to predict their resulting adverse events in a real-world setting.
Experimental Design: We provide here a proof-of-concept study using 15 million patient records from the FDA Adverse Event Reporting System (FAERS). Complex adverse event frequencies of drugs or their combinations were visualized as heat maps onto a two-dimensional grid.
Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients.
Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures.
Therapy resistance to single agents has led to the realization that combination therapies could become the cornerstone of cancer treatment. To operationalize the selection of effective and safe multitarget therapies, we propose to integrate chemical and preclinical therapeutic information with clinical efficacy and toxicity data, allowing a new perspective on the drug target landscape. To assess the feasibility of this approach, we evaluated the publicly available chemical, preclinical, and clinical therapeutic data, and we addressed some potential limitations while integrating the data.
View Article and Find Full Text PDFBiol Trace Elem Res
November 2020
It is important to investigate the monthly level of trace metals in freshwater systems to assess environmental health. This information can be used to support effective management and control of natural areas in regard to the introduction and bioavailability of chemicals in the aquatic environment. We aimed to determine monthly changes in the levels of aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), mercury (Hg), zinc (Zn), nickel (Ni), and selenium (Se) in water, sediment, and fish samples from Lake Mogan.
View Article and Find Full Text PDFTargeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing.
View Article and Find Full Text PDFThe defect in homologous recombination (HR) found in BRCA1-associated cancers can be therapeutically exploited by treatment with DNA-damaging agents and PARP inhibitors. We and others previously reported that BRCA1-deficient tumors are initially hypersensitive to the inhibition of topoisomerase I/II and PARP, but acquire drug resistance through restoration of HR activity by the loss of end-resection antagonists of the 53BP1/RIF1/REV7/Shieldin/CST pathway. Here, we identify radiotherapy as an acquired vulnerability of 53BP1;BRCA1-deficient cells and .
View Article and Find Full Text PDFGlioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity.
View Article and Find Full Text PDFIn cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks.
View Article and Find Full Text PDFAlthough platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E.
View Article and Find Full Text PDFPseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by progressive ectopic mineralization of the skin, eyes, and arteries, for which no effective treatment exists. PXE is caused by inactivating mutations in the gene encoding ATP-binding cassette sub-family C member 6 (ABCC6), an ATP-dependent efflux transporter present mainly in the liver. Abcc6(-/-) mice have been instrumental in demonstrating that PXE is a metabolic disease caused by the absence of an unknown factor in the circulation, the presence of which depends on ABCC6 in the liver.
View Article and Find Full Text PDF