Dalton Trans
January 2025
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.
View Article and Find Full Text PDFTo investigate the influence of phthalocyanine aggregation on their photodynamic activity, a series of six cationic water-soluble zinc(II) phthalocyanines bearing from four to sixteen 4-((diethylmethylammonium)methyl)phenoxy substituents was synthesized. Depending on their structure, the phthalocyanines have different aggregation behaviors in phosphate buffer solutions ranging from fully assembled to monomeric states. Remarkably, independent of aggregation in buffer, very high photodynamic efficiencies against the tumor cell lines MCF-7 and MDA-MB-231 in the nanomolar range were found for all investigated phthalocyanine, and the IC(light) varied from 27 to 358 nM (3.
View Article and Find Full Text PDFPhosphoryl podands of neutral type with a flexible ethylene glycol chain and diphenylphosphorylmethyl end groups are known for their complexation properties towards various cations. In this work, the complexation process between 1,3-bis(diphenylphosphoryl)-2-oxapropane (L) and lanthanide ions was studied. Namely, the stability constants of lanthanide complexes with L in acetonitrile were estimated by the method of spectrophotometric titration.
View Article and Find Full Text PDFPost-synthetic modification of proton-conducting metal-organic frameworks (MOFs) by loading small molecules capable of generating protons into pores is an efficient approach for developing a new type of material with improved ionic conductivity. Herein, the synthesis, characterization and proton conductivity of a novel electroneutral MOF based on palladium(II) -tetrakis(4-(phosphonatophenyl))porphyrinate, IPCE-1Pd, are reported. The exposure of the obtained framework to imidazole by the diffusion vapor method has surprisingly led to its complete crystal-to-crystal MOF-to-HOF transformation, resulting in the formation of a novel hydrogen-bonded organic framework (HOF) IPCE-1Pd_Im, which is the first example of such kind of structural change among all known MOFs.
View Article and Find Full Text PDFAn exceptional efficiency of pyrazine-annelated porphyrin as a general photocatalyst for the oxidation of organic sulfides is demonstrated. It is shown that phosphonate-substituted pyrazinoporphyrin 2H-1 brings together sufficient photostability and high efficiency in the aerobic photooxidation of a series of various sulfides. The influence of the reaction conditions onto the efficiency of homogeneous sulfide photooxidation in the presence of the photosensitizer (PS) was investigated and strong dependence on the solvent system was observed.
View Article and Find Full Text PDFThe redox state of the phthalocyanine in sandwich lanthanide complexes is crucial for their applications. In this work, we demonstrate that the cation-induced supramolecular assembly of crown-substituted phthalocyanine lanthanide complexes Ln[(15C5)Pc] can be used to control the redox state of the ligand simultaneously with the coordination sphere of the central metal. We achieve unprecedented redox switching of phthalocyanine ligands in a double-decker Gd(III) complex, resulting from the intramolecular inclusion of potassium cations between the decks with simultaneous twisting of the ligands (the skew angle between them decreases from 44.
View Article and Find Full Text PDFPolymer composites based on poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine (poly-TPD) with PCBM and copper(II) pyropheophorbide derivative (Cu-PP) were developed. In thin films of the poly-TPD and Cu-PP composites, the charge carrier mobility was investigated for the first time. In the ternary poly-TPD:PCBM:Cu-PP composite, the electron and hole mobilities are the most balanced compared to binary composites and the photoconductivity is enhanced due to the sensitization by Cu-PP in blue and red spectral ranges.
View Article and Find Full Text PDFH-NMR spectroscopy of lanthanide complexes is a powerful tool for deriving spectral-structural correlations, which provide a clear link between the symmetry of the coordination environment of paramagnetic metal centers and their magnetic properties. In this work, we have first synthesized a series of homo- (M = M* = Dy) and heteronuclear (M ≠ M* = Dy/Y and Dy/Tb) triple-decker complexes , where BuO- and 15C5- are, respectively, butoxy and 15-crown-5 substituents on phthalocyanine (Pc) ligands. We provide an algorithmic approach to assigning the H-NMR spectra of these complexes and extracting the axial component of the magnetic susceptibility tensor, χax.
View Article and Find Full Text PDFThe synthesis of photothermal carbon/hydroxyapatite composites poses challenges due to the binding modes and relatively low photothermal conversion efficiency. To address these challenges, the calcium ions chelated by photothermal carbon dots (PTC-CDs) served as the calcium source for the synthesis of photothermal carbon dots chelated hydroxyapatite (PTC-HA) filler via the coprecipitation method. The coordination constant and chelation sites of PTC-HA were 7.
View Article and Find Full Text PDFComposite resins impregnated by different organophosphorus extractants were developed and used for the extraction chromatography recovery of rare earth elements from nitrate-based leachate of NdFeB permanent magnets. The influence of different factors on recovery of Nd(III) and Fe(III), as the most difficult to separate elements, by developed resins was studied. The influence of extractant structure, the composition of feed solutions, and concentrations of HNO and NHNO on the recovery of Fe(III) and Nd(III) by prepared resins were considered.
View Article and Find Full Text PDFA method for the grafting of unsymmetrical ABC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy.
View Article and Find Full Text PDFStabilization of different conformers of sandwich phthalocyaninates by changing the solvation environment has been demonstrated with the examples of new heteroleptic yttrium(III) and terbium(III) triple-decker complexes (where M = Y or Tb, [(BuO)Pc] = octa--butoxyphthalocyaninato ligand, and [(15C5)Pc] = tetra-15-crown-5-phthalocyaninato ligand). To this end, we have performed a comprehensive crystallographic characterization of two solvates formed by the Y(III) complex with either toluene or dichloromethane. In the solvate with toluene, both pairs of Pc ligands are in staggered conformations, providing both metal cations with a square-antiprismatic environment.
View Article and Find Full Text PDFIn the present work, we report the synthesis of isomeric heteronuclear terbium(III) and yttrium(III) triple-decker phthalocyaninates (M = Tb, M* = Y or M = Y, M* = Tb, [(BuO)Pc]-octa--butoxyphthalocyaninato-ligand, [(15C5)Pc]-tetra-15-crown-5-phthalocyaninato-ligand). We show that these complexes undergo solvation-induced switching: the conformers in which both metal centers are in square-antiprismatic environments are stabilized in toluene, whereas in dichloromethane, the metal centers M and M* are in distorted prismatic and antiprismatic environments, respectively. This conclusion follows from the detailed analysis of lanthanide-induced shifts in H NMR spectra, which makes it possible to extract the axial component of the magnetic susceptibility tensor χaxTb and to show that this term is particularly sensitive to conformational switching when terbium(III) ion is placed in the switchable "M" site.
View Article and Find Full Text PDFHydrogen-bonded organic frameworks (HOFs) possessing high crystallinity, simple synthetic procedure and easy regeneration provide high efficiency as multifunctional systems, including applications as proton conductors. Porphyrinylphosphonates having acidic moieties, which can form multiple hydrogen bonds, together with tunable physical-chemical properties of a macrocycle may significantly improve the proton conductivity of such materials. Herein, the synthesis, characterization and proton-conducting properties of a novel anionic HOF based on a new complex of palladium(II) with -tetrakis(4-(phosphonatophenyl))porphyrin, HOF-IPCE-1Pd, are reported.
View Article and Find Full Text PDFThe coordination-driven design and synthesis of new stable supramolecular cluster-porphyrin (CP) hybrids based on an A-type ruthenium porphyrin 5,15-bis[(-tolyl)porphyrinato(2-)]ruthenium(carbonyl)(aqua) [RuDTolP(CO)H2O] and an octahedral molybdenum(II) iodide cluster with six terminal isonicotinate ligands (BuN)[{MoI}(OOC-CHN)] (PyMoC) are reported. The stepwise supramolecular assembly of the PyMoC "superoctahedron" with RuDTolP(CO)H2O has been studied by H NMR and 2D H-H COSY, H-N HMBC and DOSY techniques, as well as by UV-vis spectroscopy and HR-ESI mass spectrometry. The formation of discrete cluster-porphyrin CPn adducts with different numbers of coordinated porphyrins ( = 1-6), including the geometrical isomers of CP2, CP3 and CP4, has been observed.
View Article and Find Full Text PDFCu (II) protoporphyrin Cu-PP-IX and chlorin Cu-C-e6 were found to have both thin solid film formation and charge carrier transport abilities. In the layers deposited by resistive thermal evaporation, the mobilities of holes and electrons are on the order of 10 cm V s. Organic light-emitting diodes incorporating the dye molecules as emitting dopants demonstrate electroluminescence in the UV and near-IR ranges.
View Article and Find Full Text PDFThe ability of P(V) phthalocyanines (Pcs) for efficient singlet oxygen (SO) generation was demonstrated for the first time by the example of unsubstituted and α- and β-octabutoxy-substituted P(V)Pcs with hydroxy, methoxy and phenoxy ligands in the apical positions of the octahedral P centre. Variation of substituents in Pc ring and P(V) axial ligands allows careful tuning of photophysical and photochemical properties. Indeed, a combination of BuO groups in the β-positions of the Pc ring and PhO groups as axial ligands provides significant SO generation quantum yields up to 90%; meanwhile, the values of SO generation quantum yields for others investigated compounds vary from 27 to 55%.
View Article and Find Full Text PDFThe extraction of lithium from aqueous solutions of LiNTf and LiCl salts using benzo-15-crown-5 ether (B15C5) as an extractant in [C8mim][NTf] ionic liquid was studied. The transition of the extractant into the aqueous phase and the distribution of Cl ions during lithium extraction from LiCl solutions were determined. LiNTf complexes with B15C5 with different LiNTf:B15C5 ratios were isolated for the first time and characterized via X-ray diffraction and IR spectroscopy.
View Article and Find Full Text PDFDouble- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of these sandwiches depend on their conformational state, which is determined via the skew angle of the phthalocyanine ligands. Thus, in the present work we report the comprehensive conformational study of substituted terbium(III) and yttrium(III) trisphthalocyaninates in solution depending on the substituents at the periphery of molecules, redox-states and nature of solvents.
View Article and Find Full Text PDFLuminescent temperature sensors are of great interest because they allow remote determination of temperature in transparent media, such as living tissues, as well as on scattering or transparent surfaces of materials. This study analyzes the luminescent properties of copper(II) etioporphyrinate (Cu-EtioP) in a polystyrene film upon variation of temperature from -195 °C to +65 °C in a cryostat. It is shown that the ratio of intensities of phosphorescence transitions in the red spectral region of such a material varies significantly, that is, the material has thermosensory properties.
View Article and Find Full Text PDFIt was established that isopropyl salicylate can be used similarly to 1,3-diketones as a key component for a new efficient extraction system for selective separation of alkali metal cations. According to DFT modeling of complexes of isopropyl salicylate and 1,3-diketone with alkali metal cations (Li+, Na+, K+), six-membered metallacycles are formed whose stability decreases along the series Li > Na > K, which results in the observed enhanced affinity to lithium. The extraction ability of isopropyl salicylate is manifested in the presence of trioctylphosphine oxide (TOPO).
View Article and Find Full Text PDFStudies on copper(II) tetrafluorenyl porphyrinate (CuTFP) and copper(II) tetraphenyl porphyrinate (CuTPP) have been focused on the charge carrier transport in their solid films and electroluminescence of their composites. In the dye layers deposited by resistive thermal evaporation, the mobilities of holes and electrons are on the order of 10 and 10 cm V s for the charge transport under the influence of traps, and the charge mobility reaches the order of 10 cm V s at space-charge-limited current in the nontrapping mode. For the dye molecules, the correlation between the mobility of charge carriers and the distribution of the electron density on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), which serve as hopping sites for holes and electrons, respectively, is considered.
View Article and Find Full Text PDFMolecules
January 2022
The article presents data on the solvent extraction separation of rare-earth elements (REEs), such as La(III), Ce(III), Pr(III), and Nd(III), using synergic mixtures of methyltrioctylammonium nitrate (TOMANO) with tri-n-butyl phosphate (TBP) from weakly acidic nitrate solutions. Specifically, experimental results on separation of REEs, for the pair Ce(III)/Pr(III) for quaternary mixtures of REEs (La(III), Ce(III), Pr(III), Nd(III)) and for the pair La(III)/Pr(III) for solutions containing La(III), Pr(III), and Nd(III), are presented. It was shown that effective separation for the pair Ce(III)/Pr(III) from a solution containing 219 g Ce(III)/L, 106 g La(III)/L, 20 g Pr(III)/L, 55 g Nd(III)/L, and 0.
View Article and Find Full Text PDF