Stimulus and location specificity are long considered hallmarks of visual perceptual learning. This renders visual perceptual learning distinct from other forms of learning, where generalization can be more easily attained, and therefore unsuitable for practical applications, where generalization is key. Based on the hypotheses derived from the structure of the visual system, we test here whether stimulus variability can unlock generalization in perceptual learning.
View Article and Find Full Text PDFValue-based decisions about alternatives we have never experienced can be guided by associations between current choice options and memories of prior reward. A critical question is how similar memories need to be to the current situation to effectively guide decisions. We address this question in the context of associative learning of faces using a sensory preconditioning paradigm.
View Article and Find Full Text PDFJ Neurosci Methods
February 2020
Background: The ability to reconstruct neuronal networks, local microcircuits, or the entire connectome is a central goal of modern neuroscience. Recently, advancements in sample preparation (e.g.
View Article and Find Full Text PDFSummary: This note describes nTracer, an ImageJ plug-in for user-guided, semi-automated tracing of multispectral fluorescent tissue samples. This approach allows for rapid and accurate reconstruction of whole cell morphology of large neuronal populations in densely labeled brains.
Availability And Implementation: nTracer was written as a plug-in for the open source image processing software ImageJ.
Teams of processive molecular motors are critical for intracellular transport and organization, yet coordination between motors remains poorly understood. Here, we develop a system using protein components to generate assemblies of defined spacing and composition inside cells. This system is applicable to studying macromolecular complexes in the context of cell signaling, motility, and intracellular trafficking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2014
The kinesin-3 family is one of the largest among the kinesin superfamily and its members play important roles in a wide range of cellular transport activities, yet the molecular mechanisms of kinesin-3 regulation and cargo transport are largely unknown. We performed a comprehensive analysis of mammalian kinesin-3 motors from three different subfamilies (KIF1, KIF13, and KIF16). Using Forster resonance energy transfer microscopy in live cells, we show for the first time to our knowledge that KIF16B motors undergo cargo-mediated dimerization.
View Article and Find Full Text PDF