Three titanium alloys with 0.5, 6, and 9 wt.% iron were investigated, and the samples were pre-annealed in three different regions of the Ti-Fe phase diagram, namely β, α+β, and α+FeTi.
View Article and Find Full Text PDFThe pivotal role of metal implants within the host's body following reconstructive surgery hinges primarily on the initial phase of the process: the adhesion of host cells to the implant's surface and the subsequent colonization by these cells. Notably, titanium alloys represent a significant class of materials used for crafting metal implants. This study, however, marks the first investigation into how the phase composition of titanium alloys, encompassing the volume fractions of the α, β, and ω phases, influences cell adhesion to the implant's surface.
View Article and Find Full Text PDFIn this work the high-entropy alloy studied contained six components, Ti/Zr/Hf/Mo/Cr/Co, and three phases, namely one phase with body-centered cubic lattice (BCC) and two Laves phases C14 and C15. A series of annealings in the temperature range from 600 to 1000 °C demonstrated not only a change in the microstructure of the TiZrHfMoCrCo alloy, but also the modification of phase composition. After annealing at 1000 °C the BCC phase almost fully disappeared.
View Article and Find Full Text PDFThe microstructure and properties of titanium-based alloys can be tailored using severe plastic deformation. The structure and microhardness of Ti⁻4 wt.% Co alloy have been studied after preliminary annealing and following high pressure torsion (HPT).
View Article and Find Full Text PDF