Publications by authors named "Askanas V"

Muscle fibers in patients with sporadic inclusion-body myositis (s-IBM),the most common age-associated myopathy, are characterized by autophagic vacuoles and accumulation of ubiquitinated and congophilic multiprotein aggregates that contain amyloid-β and phosphorylated tau. Muscle fibers of autosomal-recessive hereditary inclusion-body myopathy caused by the GNE mutation (GNE-h-IBM) display similar pathologic features, except with less pronounced congophilia. Accumulation of unfolded/misfolded proteins inside the endoplasmic reticulum (ER) lumen leads to ER stress, which elicits the unfolded protein response (UPR) as a protective mechanism.

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease in which aging appears to be a key risk factor. In this review we focus on several cellular molecular mechanisms responsible for multiprotein aggregation and accumulations within s-IBM muscle fibers, and their possible consequences. Those include mechanisms leading to: a) accumulation in the form of aggregates within the muscle fibers, of several proteins, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; and b) protein misfolding and aggregation, including evidence of abnormal myoproteostasis, such as increased protein transcription, inadequate protein disposal, and abnormal posttranslational modifications of proteins.

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM) is a severe, progressive muscle disease for which there is no enduring treatment. Pathologically characteristic are vacuolated muscle fibers having: accumulations of multi-protein aggregates, including amyloid-β(Aβ) 42 and its toxic oligomers; increased γ-secretase activity; and impaired autophagy. Cultured human muscle fibers with experimentally-impaired autophagy recapitulate some of the s-IBM muscle abnormalities, including vacuolization and decreased activity of lysosomal enzymes, accompanied by increased Aβ42, Aβ42 oligomers, and increased γ-secretase activity.

View Article and Find Full Text PDF

Aims: Sporadic inclusion-body myositis (s-IBM) is an age-associated degenerative muscle disease. Characteristic features are muscle-fibre vacuolization and intramuscle-fibre accumulations of multiprotein aggregates, which may result from the demonstrated impairments of the 26S proteasome and autophagy. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal degradation targeting proteins carrying the KFERQ motif.

View Article and Find Full Text PDF

Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

The pathogenesis of sporadic inclusion-body myositis (s-IBM) is complex; it involves multidimensional pathways and the most critical issues are still unresolved. The onset of muscle fiber damage is age related and the disease is slowly, but inexorably, progressive. Muscle fiber degeneration and mononuclear cell inflammation are major components of s-IBM pathology, but which is precedent and how they interrelate is not known.

View Article and Find Full Text PDF

The muscle-fiber phenotype of sporadic inclusion-body myositis (s-IBM), the most common muscle disease associated with aging, shares several pathological abnormalities with Alzheimer disease (AD) brain, including accumulation of amyloid-β 42 (Aβ42) and its cytotoxic oligomers. The exact mechanisms leading to Aβ42 production within s-IBM muscle fibers are not known. Aβ42 and Aβ40 are generated after the amyloid-precursor protein (AβPP) is cleaved by β-secretase and the γ-secretase complex.

View Article and Find Full Text PDF

Intra-muscle fiber accumulation of ubiquitinated protein aggregates containing several conformationally modified proteins, including amyloid-β and phosphorylated tau, is characteristic of the pathologic phenotype of sporadic inclusion-body myositis (s-IBM), the most common progressive degenerative myopathy of older persons. Abnormalities of protein-degradation, involving both the 26S proteasome and autophagic-lysosomal pathways, were previously demonstrated in s-IBM muscle. NBR1 is a ubiquitin-binding scaffold protein importantly participating in autophagic degradation of ubiquitinated proteins.

View Article and Find Full Text PDF

s-IBM is the most common muscle disease of older persons. Its muscle fiber molecular phenotype has close similarities to Alzheimer disease (AD) brain, including intra-muscle-fiber accumulations of (a) Aβ42 and its oligomers, and (b) large, squiggly or linear, clusters of paired-helical filaments (PHFs) that are immunoreactive with various antibodies directed against several epitopes of phosphorylated tau (p-tau), and thereby strongly resembling neurofibrillary tangles of AD brain. In AD brain, conformational changes of tau, including its modifications detectable with specific antibodies TG3 (recognizing phosphorylated-Thr231), and Alz50 and MC1 (both recognizing amino acids 5-15 and 312-322) are considered early and important modifications leading to tau's abnormal folding and assembly into PHFs.

View Article and Find Full Text PDF

The pathogenesis of sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is complex and multifactorial. Both the muscle fiber degeneration and the mononuclear-cell inflammation are components of the s-IBM pathology, but how each relates to the pathogenesis remains unsettled. We consider that the intramuscle fiber degenerative component plays the primary and the major pathogenic role leading to muscle fiber destruction and clinical weakness.

View Article and Find Full Text PDF

Accumulation of amyloid-β (Aβ) within muscle fibers has been considered an upstream step in the development of the s-IBM pathologic phenotype. Aβ42, which is considered more cytotoxic than Aβ40 and has a higher propensity to oligomerize, is preferentially increased in s-IBM muscle fibers. In Alzheimer disease (AD), low-molecular weight Aβ oligomers and toxic oligomers, also referred to as "Aβ-Derived Diffusible Ligands" (ADDLs), are considered strongly cytotoxic and proposed to play an important pathogenic role.

View Article and Find Full Text PDF

The hallmark pathologies of sporadic inclusion-body myositis (s-IBM) muscle fibers are autophagic vacuoles and accumulation of ubiquitin-positive multiprotein aggregates that contain amyloid-beta or phosphorylated tau in a beta-pleated sheet amyloid configuration. Endoplasmic reticulum stress (ERS) and 26S proteasome inhibition, also associated with s-IBM, putatively aggrandize the accumulation of misfolded proteins. However, autophagosomal-lysosomal pathway formation and function, indicated by autophagosome maturation, have not been previously analyzed in this system.

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. Its muscle-fiber phenotype shares several molecular similarities with Alzheimer-disease (AD) brain, including increased AbetaPP, accumulation of amyloid-beta (Abeta), and increased BACE1 protein. Abeta42 is prominently increased in AD brain and within s-IBM fibers, and its oligomers are putatively toxic to both tissues--accordingly, minimizing Abeta42 production can be a therapeutic objective in both tissues.

View Article and Find Full Text PDF

Muscle fiber degeneration in sporadic inclusion-body myositis (s-IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid-beta (Abeta)-precursor protein 751 (AbetaPP751), Abeta, phosphorylated tau, and other 'Alzheimer-characteristic' proteins. Proteasome inhibition is an important component of the s-IBM pathogenesis. In brains of Alzheimer's disease (AD) patients and AD transgenic-mouse models, phosphorylation of neuronal AbetaPP695 (p-AbetaPP) on Thr668 (equivalent to T724 of AbetaPP751) is considered detrimental because it increases generation of cytotoxic Abeta and induces tau phosphorylation.

View Article and Find Full Text PDF

Sporadic inclusion body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause, and there is no enduring treatment. Abnormal accumulation of intracellular multi-protein inclusions is a characteristic feature of the s-IBM phenotype, and as such s-IBM can be considered a "conformational disorder," caused by protein unfolding/misfolding combined with the formation of inclusion bodies. Abnormal intracellular accumulation of unfolded proteins may lead to their aggregation and inclusion body formation.

View Article and Find Full Text PDF

p62, also known as sequestosome1, is a shuttle protein transporting polyubiquitinated proteins for both the proteasomal and lysosomal degradation. p62 is an integral component of inclusions in brains of various neurodegenerative disorders, including Alzheimer disease (AD) neurofibrillary tangles (NFTs) and Lewy bodies in Parkinson disease. In AD brain, the p62 localized in NFTs is associated with phosphorylated tau (p-tau).

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM) is the only muscle disease in which accumulation of amyloid-beta (Abeta) in abnormal muscle fibers appears to play a key pathogenic role. Increased amyloid-beta precursor protein (AbetaPP) and Abeta accumulation have been reported to be upstream steps in the development of the s-IBM pathologic phenotype, based on cellular and animal models. Abeta is released from AbetaPP as a 40 or 42 aminoacid peptide.

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause and lacks successful treatment. Here we summarize diagnostic criteria and discuss our current understanding of the steps in the pathogenic cascade. While it is agreed that both degeneration and mononuclear-cell inflammation are components of the s-IBM pathology, how each relates to the pathogenesis remains unsettled.

View Article and Find Full Text PDF

SIRT1 belongs to the sirtuin family of NAD(+)-dependent histone/protein deacetylases. Experimentally, increased activity of SIRT1 facilitates calorie-restricted longevity, and decreases NF-kappaB activation and the amount of the amyloid-beta (Abeta). We studied SIRT1 in an aging-associated muscle disease, sporadic inclusion-body myositis (s-IBM), whose muscle fibers contain increased NF-kappaB activation and abnormal accumulation of Abeta.

View Article and Find Full Text PDF

Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. The muscle-fiber molecular phenotype exhibits similarities to both Alzheimer-disease (AD) and Parkinson-disease (PD) brains, including accumulations of amyloid-beta, phosphorylated tau, alpha-synuclein, and parkin, as well as evidence of oxidative stress and mitochondrial abnormalities. Early-onset autosomal-recessive PD can be caused by mutations in the DJ-1 gene, leading to its inactivation.

View Article and Find Full Text PDF