Molecular targeting remains to be a promising approach in oncology. Overexpression of G protein-coupled receptors (GPCRs) in human cancer is offering a powerful opportunity for tumor-selective imaging and treatment employing nuclear medicine. We utilized novel chemerin-based peptide conjugates for chemokine-like receptor 1 (CMKLR1) targeting in a breast cancer xenograft model.
View Article and Find Full Text PDFPurpose: Melanocortin receptor 1 (MC1R) is overexpressed in melanoma and may be a molecular target for imaging and peptide receptor radionuclide therapy. 68Gallium (68Ga) labeling of DOTA-conjugated peptides is an established procedure in the clinic for use in positron emission tomography (PET) imaging. Aim of this study was to compare a standard labeling protocol against the 68Ga-DOTA peptide purified from the excess of unlabeled peptide.
View Article and Find Full Text PDFIn fluorophores, the excited state lifetime can be modulated using pump-probe excitation. By generating photoacoustic (PA) signals using simultaneous and time-delayed pump and probe excitation pulses at fluences below the maximum permissible exposure, a modulation of the signal amplitude is observed in fluorophores but not in endogenous chromophores. This provides a highly specific contrast mechanism that can be used to recover the location of the fluorophore using difference imaging.
View Article and Find Full Text PDFThe Berlin Fat Mouse Inbred (BFMI) line harbors a major recessive gene defect on chromosome 3 () leading to juvenile obesity and metabolic syndrome. The present study aimed at the identification of metabolites that might be linked to recessively acting genes in the obesity locus. Firstly, serum metabolites were analyzed between obese BFMI and lean B6 and BFMI × B6 F mice to identify metabolites that are different.
View Article and Find Full Text PDFObesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density.
View Article and Find Full Text PDFThis study aimed to investigate the tissue-specific role of the insulin-like growth factor 1 (IGF-I) on glucose homeostasis in the high-fatness selected Berlin Fat Mouse Inbred (BFMI) line. Therefore, the expression of different IGF-I transcripts and IGF-I protein, IGF-binding proteins, insulin as well as glucose tolerance was analyzed in BFMI in comparison with that in lean mice. In addition, dietary effects were investigated.
View Article and Find Full Text PDFBackground: The Berlin Fat Mouse BFMI860 is a polygenic obesity mouse model which harbors a natural major gene defect resulting in early onset of obesity. To elucidate adult bodily responses in BFMI860 mice that develop juvenile obesity, we studied features of the metabolic syndrome at 20 weeks.
Methods: We examined fat deposition patterns, adipokines, lipid profiles in serum, glucose homeostasis, and insulin sensitivity in mice that were fed either a standard maintenance (SMD) or a high-fat diet (HFD).
Background: The Berlin Fat Mouse Inbred (BFMI) line is a new mouse model for obesity, which was long-term selected for high fatness. Peroxisome proliferator-activated receptors (PPARs) are involved in the control of energy homeostasis, nutrient metabolism and cell proliferation. Here, we studied the expression patterns of the different Ppar genes and the genes in the PPAR pathway in the BFMI line in comparison to physiological changes.
View Article and Find Full Text PDFThe aim of this study was to characterize the responses of individual tissues to high-fat feeding as a function of mass, fat composition, and transcript abundance. We examined a panel of eight tissues [5 white adipose tissues (WAT), brown adipose tissue (BAT), liver, muscle] obtained from DBA/2J mice on either a standard breeding diet (SBD) or a high-fat diet (HFD). HFD led to weight gain, decreased insulin sensitivity, and tissue-specific responses, including inflammation, in these mice.
View Article and Find Full Text PDFAdult roe deer males show seasonal cycles of testicular growth and involution. The exact timing of these cycles requires endocrine regulation and local testicular control by autocrine/paracrine factors. Recent findings suggest that the vascular endothelial growth factor (VEGF) might have effects on both vascular and germinative cells in testis.
View Article and Find Full Text PDFObesity (Silver Spring)
November 2009
To constitute a valuable resource to identify individual genes involved in the development of obesity, a novel mouse model, the Berlin Fat Mouse Inbred line 860 (BFMI860), was established. In order to characterize energy intake and energy expenditure in obese BFMI860 mice, we performed two independent sets of experiments in male BFMI860 and B6 control mice (10 per line). In experiment 1, we analyzed body fat content noninvasively by dual-energy X-ray absorptiometry and measured resting metabolic rate at thermoneutrality (RMRt) and respiratory quotient (RQ) in week 6, 10, and 18.
View Article and Find Full Text PDFMouse lines long-term selected for high fatness offer the possibility to identify individual genes involved in the development of obesity. The Berlin Fat Mouse (BFM) line has been selected for low protein content and afterward for high fatness. Three Berlin Fat Mouse Inbred (BFMI) lines, which are derivates of the selection line BFM and an unselected control line (C57BL/6; B6) were systematically phenotyped between 3 and 20 wk.
View Article and Find Full Text PDFGrowth factors are involved in the regulation of testicular growth and involution of seasonal breeders. Therefore, we studied the seasonal expression of several growth factors in roe deer: aFGF, bFGF, IGF-1, IGF-2, and TGF-alpha. Total RNA from testis tissue was extracted monthly and analyzed using quantitative RT-PCR.
View Article and Find Full Text PDF