Publications by authors named "Asita Chatterjee"

Erwinia carotovora subsp. carotovora causes soft-rotting (tissue-macerating) disease in many plants and plant organs. Although pectinases are the primary determinants of virulence, several ancillary factors that augment bacterial virulence have also been identified.

View Article and Find Full Text PDF

RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA.

View Article and Find Full Text PDF

Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals.

View Article and Find Full Text PDF

The N-acylhomoserine lactone (AHL) signaling system comprises a producing system that includes acylhomoserine synthase (AhlI, a LuxI homolog) and a receptor, generally a LuxR homolog. AHL controls exoprotein production in Erwinia carotovora and consequently the virulence for plants. In previous studies we showed that ExpR, a LuxR homolog, is an AHL receptor and that it activates transcription of rsmA, the gene encoding an RNA binding protein which is a global negative regulator of exoproteins and secondary metabolites.

View Article and Find Full Text PDF

In Erwinia carotovora subspecies, N-acyl homoserine lactone (AHL) controls the expression of various traits, including extracellular enzyme/protein production and pathogenicity. We report here that E. carotovora subspecies possess two classes of quorum-sensing signaling systems defined by the nature of the major AHL analog produced as well as structural and functional characteristics of AHL synthase (AhlI) and AHL receptor (ExpR).

View Article and Find Full Text PDF

N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp.

View Article and Find Full Text PDF

Concerted investigations of factors affecting host-pathogen interactions are now possible with the model plant Arabidopsis thaliana and its model pathogen Pseudomonas syringae pv. tomato DC3000, as their whole genome sequences have become available. As a prelude to analysis of the regulatory genes and their targets, we have focused on GacA, the response regulator of a two-component system.

View Article and Find Full Text PDF

In Erwinia carotovora subsp. carotovora (Ecc) strain 71 (Ecc71), HrpL(Ecc), an alternate sigma factor of the extracytoplasmic function subfamily, plays a central role in the expression of the hrp (hypersensitive reaction and pathogenicity) regulon. We document here that sigma-54 (RpoN) is required for full expression of hrpL(Ecc) and that HrpS, in conjunction with sigma-54, activates hrpL(Ecc) transcription.

View Article and Find Full Text PDF

Summary Erwinia carotovora ssp. carotovora (Ecc) possesses hrpN(Ecc)[hrp = gene for hypersensitive reaction (HR) and pathogenicity], the structural gene for Harpin(Ecc), the inducer of the HR-like response and genes for the type III secretion system. In Ecc, RsmA, an RNA-binding protein responsible for the accelerated decay of RNA species, tightly controls the expression of the Hrp regulon.

View Article and Find Full Text PDF

RsmA (for regulator of secondary metabolism), RsmC, and rsmB RNA, the components of a posttranscriptional regulatory system, control extracellular protein production and pathogenicity in Erwinia carotovora subsp. carotovora. RsmA, an RNA binding protein, acts as a negative regulator by promoting message decay.

View Article and Find Full Text PDF