The investigation of worldwide climate change is a noticeable exploration topic in the field of sciences. Outflow of greenhouse gases in the environment is the main reason behind the worldwide environmental change. Greenhouse gases retain heat from the sun and prompt the earth to become more sultry, resulting in global warming.
View Article and Find Full Text PDFThis paper considers a nonlinear dynamical model of an ecosystem, which has been established through combining the classical Lotka-Volterra model with the classic SIR model. This nonlinear system consists of a generalist predator that subsists on two prey species in which disease is becoming endemic in one of them. The dynamical analysis methods prove that the system has a chaotic attractor and extreme multistability behavior, where there are infinitely many attractors that coexist under certain conditions.
View Article and Find Full Text PDFRev Med Virol
September 2020
A knowledge-based cybernetic framework model representing the dynamics of SARS-CoV-2 inside the human body has been studied analytically and in silico to explore the pathophysiologic regulations. The following modeling methodology was developed as a platform to introduce a predictive tool supporting a therapeutic approach to Covid-19 disease. A time-dependent nonlinear system of ordinary differential equations model was constructed involving type-I cells, type-II cells, SARS-CoV-2 virus, inflammatory mediators, interleukins along with host pulmonary gas exchange rate, thermostat control, and mean pressure difference.
View Article and Find Full Text PDFControlled external chemomechanical stimuli have been shown to influence cellular and tissue regeneration/degeneration, especially with regards to distinct disease sequelae or health maintenance. Recently, a unique three-dimensional stress state was mathematically derived to describe the experimental stresses applied to isolated living cells suspended in an optohydrodynamic trap (optical tweezers combined with microfluidics). These formulae were previously developed in two and three dimensions from the fundamental equations describing creeping flows past a suspended sphere.
View Article and Find Full Text PDFInt J Comput Healthc
January 2012
Physiologic regulation of extracellular matrix (ECM) in articular cartilage tissue is controlled by cellular and molecular mechanisms which are not fully understood. It has been observed that the synthesis of the ECM structural molecules, glycosaminoglycan and collagen are promoted by growth factors such as IGF-1 and TGF-β. Concomitant ECM degradation is promoted by a variety of cytokines such as IL-1.
View Article and Find Full Text PDFNon-destructive techniques characterising the mechanical properties of cells, tissues, and biomaterials provide baseline metrics for tissue engineering design. Ultrasonic wave propagation and attenuation has previously demonstrated the dynamics of extracellular matrix synthesis in chondrocyte-seeded hydrogel constructs. In this paper, we describe an ultrasonic method to analyse two of the construct elements used to engineer articular cartilage in real-time, native cartilage explants and an agarose biomaterial.
View Article and Find Full Text PDFMultiscale technology and advanced mathematical models have been developed to control and characterize physicochemical interactions, respectively, enhancing cellular and molecular engineering progress. Ongoing tissue engineering development studies have provided experimental input for biokinetic models examining the influence of static or dynamic mechanical stimuli (Saha, A. K.
View Article and Find Full Text PDFThere has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation.
View Article and Find Full Text PDFOngoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state.
View Article and Find Full Text PDFEnhancing the available nanotechnology to describe physicochemical interactions during biokinetic regulation will strongly support cellular and molecular engineering efforts. In a recent mathematical model developed to extend the applicability of a statically loaded, single-cell biomechanical analysis, a biokinetic regulatory threshold was presented (Saha and Kohles, 2010, "A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model," J. Nanotechnol.
View Article and Find Full Text PDFUnderstanding physicochemical interactions during biokinetic regulation will be critical for the creation of relevant nanotechnology supporting cellular and molecular engineering. The impact of nanoscale influences in medicine and biology can be explored in detail through mathematical models as an in silico testbed. In a recent single-cell biomechanical analysis, the cytoskeletal strain response due to fluid-induced stresses was characterized (Wilson, Z.
View Article and Find Full Text PDFBackground: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect).
View Article and Find Full Text PDFIn the design of engineered tissues, guided balance of biomaterial degeneration with tissue synthesis offers refined control of construct development. The objective of this study was to develop a mathematical model that describes the steady state metabolism of extracellular matrix molecules (ECM: glycosaminoglycan and collagen) in an engineered cartilage construct taking into account localized environmental changes that may arise because of the application of growth factors. The variable effects of growth factors were incorporated in the form of random noise rather than the difference in rates of synthesis and catabolism.
View Article and Find Full Text PDF