Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated.
View Article and Find Full Text PDFThe current study reports the design and construction of enzyme-free sensor using N-doped graphene quantum dots (N-GQDs)-decorated tin sulfide nanosheets (SnS) for in situ monitoring of HO secreted by human breast cancer cells. N-GQDs nanoparticles having a size of less than 1 nm were incorporated into SnS nanosheets to form an N-GQDs@SnS nanocomposite using a simple hydrothermal approach. The resulting hybrid material was an excellent electrocatalyst for the reduction of HO, owing to the combined properties of highly conductive N-GQDs and SnS nanosheets.
View Article and Find Full Text PDFHydrogen sulfide (HS), an endogenous gasotransmitter, is produced in mammalian systems and is closely associated with pathological and physiological functions. Nevertheless, the complete conversion of HS is still unpredictable owing to the limited number of sensors for accurate and quantitative detection of HS in biological samples. In this study, we constructed a disposable electrochemical sensor based on PtNi alloy nanoparticles (PtNi NPs) for sensitive and specific in situ monitoring of HS released by human breast cancer cells.
View Article and Find Full Text PDFWe develop a disposable electrochemical sensor using a titanium nanoparticles (Ti NPs)-anchored functionalized multi-walled carbon nanotube (Ti@f-MWCNTs) composite as electrochemical sensing interface for the detection of ractopamine (RAC). The sensor demonstrated superior electrochemical sensing ability with a broad linear response range (0.01-185 μM) and ultralow detection limit (0.
View Article and Find Full Text PDFMetastatic oral squamous cell carcinoma (SCC) displays a poor disease prognosis with a 5-year survival rate of 39%. Chemotherapy has emerged as the mainstream treatment against small clusters of cancer cells but poses more risks than benefits for metastatic cells due to the non-specificity and cytotoxicity. To overcome these obstacles, we conjugated antibodies specific for matrix metalloproteinase-1 (MMP-1), a prognostic biomarker of SCC, to iron-gold bimetallic nanoparticles (FeAu NPs) and explored the capability of this complex to target and limit SSC cell growth via magnetic field-induced hyperthermia.
View Article and Find Full Text PDFA composite coating of polyelectrolyte multilayers (PEMs) consisting of collagen, a chitosan barrier, and poly-γ-glutamic acid was fabricated using a spin coating technique to investigate and overcome the limited osseointegration capacity of 316 L stainless steel (316 L SS). To further enhance the biocompatibility, bone morphogenetic protein 2 (BMP-2) and basic fibroblast growth factor-2 (FGF-2) were loaded separately as dual growth factors, allowing for progressive drug release following the natural process of bone regeneration. The first burst release of FGF-2 triggered the proliferation of surrounding cells, and the subsequent release of BMP-2 stimulated their differentiation.
View Article and Find Full Text PDF