Oct4 is a master regulator of pluripotency. Potential Oct4 interactors have been cataloged extensively but the manner and significance of these interactions are incompletely defined. Like other POU domain proteins, Oct4 is capable of binding to DNA in multiple configurations, however the relationship between these configurations and cofactor recruitment (and hence transcription output) are unknown.
View Article and Find Full Text PDFMemory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells.
View Article and Find Full Text PDFDuring human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD.
View Article and Find Full Text PDFUnlabelled: Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a β-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting β-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV.
View Article and Find Full Text PDFDue to limited available therapeutic options, developing new lead compounds against hepatitis C virus is an urgent need. Human La protein stimulates hepatitis C virus translation through interaction with the hepatitis C viral RNA. A cyclic peptide mimicking the β-turn of the human La protein that interacts with the viral RNA was synthesized.
View Article and Find Full Text PDFHuman La protein has been implicated in facilitating internal ribosome entry site (IRES)-mediated translation of hepatitis C virus (HCV). Earlier, we demonstrated that the RNA recognition motif (RRM) encompassing residues 112 to 184 of La protein [La (112-184)] interacts with the HCV IRES near the initiator AUG codon. A synthetic peptide, LaR2C (24-mer), derived from La RRM (112-184), retains RNA binding ability, competes with La protein binding to the HCV IRES, and inhibits translation.
View Article and Find Full Text PDF