Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil.
View Article and Find Full Text PDFArsenic tolerance in the halophyte Salvadora persica is achieved by enhancing antioxidative defense and modulations of various groups of metabolites like amino acids, organic acids, sugars, sugar alcohols, and phytohormones. Salvadora persica is a facultative halophyte that thrives under high saline and arid regions of the world. In present study, we examine root metabolic responses of S.
View Article and Find Full Text PDFChromium (Cr) is a highly toxic element adversely affecting the environment, cultivable lands, and human populations. The present study investigated the effects of Cr (VI) (100-400 μM) on plant morphology and growth, photosynthetic pigments, organic osmolytes, ionomics, and metabolomic dynamics of the halophyte Suaeda maritima to decipher the Cr tolerance mechanisms. Cr exposure reduced the growth and biomass in S.
View Article and Find Full Text PDFPotassium (K) scarcity of arable land is one of the important factors that hamper the growth of the plants and reduce yield worldwide. In the current study, we examine the physiological, biochemical, and metabolome response of Arachis hypogaea (GG7 genotype: fast-growing, tall, early maturing, and high yielding) under low K either solitary or in combination with Si to elucidate the ameliorative role of Si. The reduced fresh and dry biomass of peanut and photosynthetic pigments content was significantly alleviated by Si.
View Article and Find Full Text PDFArsenic (As) is a highly toxic metalloid adversely affecting the environment, human health, and crop productivity. The present study assessed the synergistic effects of salinity and As on photosynthetic attributes, stomatal regulations, and metabolomics responses of the xero-halophyte Salvadora persica to decipher the As-salinity cross-tolerance mechanisms and to identify the potential metabolites/metabolic pathways involved in cross-tolerance of As with salinity. Salinity and As stress-induced significant stomatal closure in S.
View Article and Find Full Text PDFDrought stress considered as a major environmental constraint that frequently limits crop production globally. In the current investigation, drought stress-induced alterations in growth, ion homeostasis, photosynthetic pigments, organic osmolytes, reactive oxygen species (ROS) generation, antioxidative components, and metabolic profile were examined in order to assess the role of silicon (Si) in mitigation of drought effects and to understand the drought adaptive mechanism in two contrasting peanut genotypes (GG7: fast growing and tall, TG26: slow growing and semi-dwarf). Si application significantly improved the leaf chlorophyll content, relative water content % (RWC %), growth and biomass in GG7 compared with TG26 genotype under water stress.
View Article and Find Full Text PDFDrought is one of the most catastrophic abiotic stresses that affects global food production severely. The present work investigates the metabolic and physiological adaptation mechanisms in the xero-halophyte Haloxylon salicornicum to counter the effects of drought. This xero-halophyte can withstand a prolonged drought period of 14 days and recovered within 7 days of irrigation with minimal effects of drought on growth and physiological parameters.
View Article and Find Full Text PDFHaloxylon salicornicum is a xero-halophyte growing in saline and arid regions of the world. Metabolite profiling was carried out in shoot of both control and salinity treated (400 mM NaCl) samples by GC-QTOF-MS and HPLC-DAD analysis to decipher the salinity tolerance mechanism in this xero-halophyte. The present study investigates the alteration in metabolite profile of H.
View Article and Find Full Text PDFHaloxylon salicornicum is a xero-halophyte which grow predominantly in dry saline areas. However, the proteomic approach for revealing the regulatory network involved in salt adaptation of this important xerohalophyte has not been studied so far. In the present investigation, the label-free quantitative proteomic analysis was carried out in shoot of H.
View Article and Find Full Text PDFArachis hypogaea L. (peanut) is a major oil yielding crop and its productivity is largely affected by the availability of nitrogen and phosphorus. The present study aims to elucidate the differential physiological and biochemical mechanisms involved in two contrasting genotypes of peanut for mitigation of N and/or P deficiency.
View Article and Find Full Text PDFHeavy metal(loid)s contamination in soil is a major environmental concern that limits agricultural yield and threatens human health worldwide. Arsenic (As) is the most toxic non-essential metalloid found in soil which comes from various natural as well as human activities. S.
View Article and Find Full Text PDFWater deficit severely limits productivity of plants, and pose a major threat to modern agriculture system. Therefore, understanding drought adaptive mechanisms in drought-tolerant plants is imperative to formulate strategies for development of desiccation tolerance in crop plants. In present investigation, metabolic profiling employing GC-QTOF-MS/MS and HPLC-DAD was carried out to evaluate metabolic adjustments under drought stress in the xero-halophyte Salvadora persica.
View Article and Find Full Text PDFThe present study evaluated the phytochemical constituents, nutritional attributes, and the antioxidant capacity of the medicinal halophyte Thespesia populnea. The metabolite profiling by GC-QTOF-MS analysis identified 37 metabolites among which sucrose, malic acid, and turanose were the most abundant. A total of 18 polyphenols and 17 amino acids were identified by the HPLC-DAD analysis.
View Article and Find Full Text PDFThe facultative halophyte Salvadora persica L. grow in arid, semiarid and saline areas. In present study, drought induced alterations in growth, ion homeostasis, photosynthesis, chlorophyll fluorescence, ROS regulation and antioxidative defense components were analyzed in S.
View Article and Find Full Text PDFHalophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts.
View Article and Find Full Text PDFTwo-month-old seedlings of Bruguiera parvifora were treated with varying levels of NaCl (100, 200 and 400 mM) under hydroponic culture. Total proteins were extracted from leaves of control and NaCl treated plants after 7, 14, 30 and 45 d of treatment and analysed by SDS-PAGE. As visualized from SDS-PAGE, the intensity of several protein bands of molecular weight 17, 23, 32, 33 and 34 kDa decreased as a result of NaCl treatment.
View Article and Find Full Text PDFPlants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones.
View Article and Find Full Text PDFA significant decrease in the amount of a protein, whose migration in two-dimensional gel electrophoresis corresponds to an apparent molecular mass of 23 kDa and pI = 6.5, was observed in leaves of NaCl-treated Bruguiera parviflora (Roxb.) Wt.
View Article and Find Full Text PDFThe influence of varying levels of salinity (0, 100, 200 and 400 mM) on the activities of nitrate reductase (NR, E.C. 1.
View Article and Find Full Text PDFIn order to assess the role of the antioxidative defense system against salt treatment, the activities of some antioxidative enzymes and levels of antioxidants were monitored in a true mangrove, Bruguiera parviflora, subjected to varying levels of NaCl under hydroponic culture. In the leaves of B. parviflora, salt treatment preferentially enhanced the content of H2O2 as well as the activity of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of total ascorbate and glutathione (GSH+GSSG) content as well as catalase (CAT) activity.
View Article and Find Full Text PDF