Sarcomatoid differentiation in RCC (sRCC) is associated with a poor prognosis, necessitating more aggressive management than RCC without sarcomatoid components (nsRCC). Since suspected renal cell carcinoma (RCC) tumors are not routinely biopsied for histologic evaluation, there is a clinical need for a non-invasive method to detect sarcomatoid differentiation pre-operatively. We utilized unsupervised self-organizing map (SOM) and supervised Learning Vector Quantizer (LVQ) machine learning to classify RCC tumors on T2-weighted, non-contrast T1-weighted fat-saturated, contrast-enhanced arterial-phase T1-weighted fat-saturated, and contrast-enhanced venous-phase T1-weighted fat-saturated MRI images.
View Article and Find Full Text PDF