Objective: To develop a novel synthetic multi-modal variable capable of capturing cardiovascular responses to acute mental stress and the stress-mitigating effect of transcutaneous median nerve stimulation (TMNS), as an initial step toward the overarching goal of enabling closed-loop controlled mitigation of the physiological response to acute mental stress.
Methods: Using data collected from 40 experiments in 20 participants involving acute mental stress and TMNS, we examined the ability of six plausibly explainable physio-markers to capture cardiovascular responses to acute mental stress and TMNS. Then, we developed a novel synthetic multi-modal variable by fusing the six physio-markers based on numerical optimization and compared its ability to capture cardiovascular responses to acute mental stress and TMNS against the six physio-markers in isolation.
Background: Posttraumatic stress disorder (PTSD) causes heightened fight-or-flight responses to traumatic memories (i.e., hyperarousal).
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2024
Hypovolemic shock is one of the leading causes of death in the military. The current methods of assessing hypovolemia in field settings rely on a clinician assessment of vital signs, which is an unreliable assessment of hypovolemia severity. These methods often detect hypovolemia when interventional methods are ineffective.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Millions around the world suffer from traumatic stress (stress caused by traumatic memories). Transcutaneous cervical vagus nerve stimulation (tcVNS) has been shown to counteract physiological changes associated with traumatic stress. However, little is known regarding the approximate timecourse of tcVNS effects.
View Article and Find Full Text PDFBackground: Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications.
Methods: This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD.
Chronic respiratory diseases affect millions and are leading causes of death in the US and worldwide. Pulmonary auscultation provides clinicians with critical respiratory health information through the study of Lung Sounds (LS) and the context of the breathing-phase and chest location in which they are measured. Existing auscultation technologies, however, do not enable the simultaneous measurement of this context, thereby potentially limiting computerized LS analysis.
View Article and Find Full Text PDFStress is a major determinant of health and wellbeing. Conventional stress management approaches do not account for the daily-living acute changes in stress that affect quality of life. The combination of physiological monitoring and non-invasive Peripheral Nerve Stimulation (PNS) represents a promising technological approach to quantify stress-induced physiological manifestations and reduce stress during everyday life.
View Article and Find Full Text PDFObjective: Muscle health and decreased muscle performance (fatigue) quantification has proven to be an invaluable tool for both athletic performance assessment and injury prevention. However, existing methods estimating muscle fatigue are infeasible for everyday use. Wearable technologies are feasible for everyday use and can enable discovery of digital biomarkers of muscle fatigue.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
August 2023
IEEE EMBS Int Conf Biomed Health Inform
September 2022
Opioid withdrawal's physiological effects are a major impediment to recovery from opioid use disorder (OUD). Prior work has demonstrated that transcutaneous cervical vagus nerve stimulation (tcVNS) can counteract some of opioid withdrawal's physiological effects by reducing heart rate and perceived symptoms. The purpose of this study was to assess the effects of tcVNS on respiratory manifestations of opioid withdrawal - specifically, respiratory timings and their variability.
View Article and Find Full Text PDFJ Am Med Inform Assoc
June 2023
Objective: To design and validate a novel deep generative model for seismocardiogram (SCG) dataset augmentation. SCG is a noninvasively acquired cardiomechanical signal used in a wide range of cardivascular monitoring tasks; however, these approaches are limited due to the scarcity of SCG data.
Methods: A deep generative model based on transformer neural networks is proposed to enable SCG dataset augmentation with control over features such as aortic opening (AO), aortic closing (AC), and participant-specific morphology.
IEEE Trans Biomed Eng
September 2023
Objective: Musculoskeletal health monitoring is limited in everyday settings where patient symptoms can substantially change - delaying treatment and worsening patient outcomes. Wearable technologies aim to quantify musculoskeletal health outside clinical settings but sensor constraints limit usability. Wearable localized multi-frequency bioimpedance assessment (MFBIA) shows promise for tracking musculoskeletal health but relies on gel electrodes, hindering extended at-home use.
View Article and Find Full Text PDFOver 100,000 individuals in the United States lost their lives secondary to drug overdose in 2021, with opioid use disorder (OUD) being a leading cause. Pain is an important component of opioid withdrawal, which can complicate recovery from OUD. This study's objectives were to assess the effects of transcutaneous cervical vagus nerve stimulation (tcVNS), a technique shown to reduce sympathetic arousal in other populations, on pain during acute opioid withdrawal and to study pain's relationships with objective cardiorespiratory markers.
View Article and Find Full Text PDFTreating opioid use disorder (OUD) is a significant healthcare challenge in the United States. Remaining abstinent from opioids is challenging for individuals with OUD due to withdrawal symptoms that include restlessness. However, to our knowledge, studies of acute withdrawal have not quantified restlessness using involuntary movements.
View Article and Find Full Text PDFBackground Patients with congenital heart disease (CHD) are at risk for the development of low cardiac output and other physiologic derangements, which could be detected early through continuous stroke volume (SV) measurement. Unfortunately, existing SV measurement methods are limited in the clinic because of their invasiveness (eg, thermodilution), location (eg, cardiac magnetic resonance imaging), or unreliability (eg, bioimpedance). Multimodal wearable sensing, leveraging the seismocardiogram, a sternal vibration signal associated with cardiomechanical activity, offers a means to monitoring SV conveniently, affordably, and continuously.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Numerous applications require accurate estimation of respiratory timings. Respiratory effort (RSP) measurement is a popular approach to accomplish this, especially when the tightness of the sensing belt around the chest can be ensured. In less controlled settings, however, belt looseness and artifacts from movement of the belt on the chest can corrupt the signal.
View Article and Find Full Text PDFBackground: Opioid Use Disorder (OUD) is a serious public health problem, and the behavioral and physiological effects of opioid withdrawal can be a major impediment to recovery. Medication for OUD is currently the mainstay of treatment; however, it has limitations and alternative approaches are needed.
Objective: The purpose of this study was to assess the effects of transcutaneous cervical vagus nerve stimulation (tcVNS) on behavioral and physiological manifestations of acute opioid withdrawal.
IEEE J Biomed Health Inform
July 2022
Although respiratory failure is one of the primary causes of admission to intensive care, the importance placed on measurement of respiratory parameters is commonly overshadowed compared to cardiac parameters. With the increased demand for unobtrusive yet quantifiable respiratory monitoring, many technologies have been proposed recently. However, there are challenges to be addressed for such technologies to enable widespread use.
View Article and Find Full Text PDFResearch has shown that transcutaneous cervical vagus nerve stimulation (tcVNS) yields downstream changes in peripheral physiology in individuals afflicted with posttraumatic stress disorder (PTSD). While the cardiovascular effects of tcVNS have been studied broadly in prior work, the specific effects of tcVNS on the reciprocal of the pulse transit time (1/PTT) remain unknown. By quantifying detectable effects, tcVNS can be further evaluated as a counterbalance to sympathetic hyperactivity during distress - specifically, we hypothesized that tcVNS would inhibit 1/PTT responses to traumatic stress.
View Article and Find Full Text PDFBackground: Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD.
View Article and Find Full Text PDFObjective: Variations in respiration patterns are a characteristic response to distress due to underlying neurorespiratory couplings. Yet, no work to date has quantified respiration pattern variability (RPV) in the context of traumatic stress and studied its functional neural correlates - this analysis aims to address this gap.
Methods: Fifty human subjects with prior traumatic experiences (24 with posttraumatic stress disorder (PTSD)) completed a ∼3-hr protocol involving personalized traumatic scripts and active/sham (double-blind) transcutaneous cervical vagus nerve stimulation (tcVNS).
Objective: Posttraumatic stress disorder (PTSD) is a disabling condition affecting a large segment of the population; however, current treatment options have limitations. New interventions that target the neurobiological alterations underlying symptoms of PTSD could be highly beneficial. Transcutaneous cervical (neck) vagal nerve stimulation (tcVNS) has the potential to represent such an intervention.
View Article and Find Full Text PDFIEEE EMBS Int Conf Biomed Health Inform
July 2021
Transcutaneous electrical stimulation of the vagus nerve is believed to deliver afferent signaling to the brain that, in turn, yields downstream changes in peripheral physiology, including cardiovascular and respiratory parameters. While the effects of transcutaneous cervical vagus nerve stimulation (tcVNS) on these parameters have been studied broadly, little is known regarding the specific effects of tcVNS on exhalation time and the spontaneous respiration cycle. By understanding such effects, tcVNS could be used to counterbalance sympathetic hyperactivity following distress by enhancing vagal tone through parasympathetically favored modulation of inspiration and expiration - specifically, lengthened expiration relative to inspiration.
View Article and Find Full Text PDF