The benefits of ischemic preconditioning (IPC) in reducing ischemia/reperfusion injury (IRI) remain indistinct in human liver transplantation (LT). To further understand mechanistic aspects of IPC, we performed microarray analyses as a nested substudy in a randomized trial of 10-minute IPC in 101 deceased donor LTs. Liver biopsies were performed after cold storage and at 90 minutes postreperfusion in 40 of 101 subjects.
View Article and Find Full Text PDFUtilization of ischemic preconditioning to ameliorate ischemia/reperfusion injury has been extensively studied in various organs and species for the past two decades. While hepatic ischemic preconditioning in animals has been largely beneficial, translational efforts in the two clinical contexts--liver resection and decreased donor liver transplantation--have yielded mixed results. This review is intended to critically examine the translational data and identify some potential reasons for the disparate clinical results, and highlight some issues for further studies.
View Article and Find Full Text PDFPurpose: A structure-activity study was undertaken to determine the influence of side chain length of phenyl alkanoic acids and the degree of unsaturation of phenyl alkenoic acids on the induction of histone acetylation and inhibition of cancer cell proliferation.
Materials And Methods: Studies on cell proliferation were performed with DS19 mouse erythroleukemic cells, PC-3 human prostate cancer cells and Caco-2 human colon cancer cells. Actions on histone deacetylase and the induction of histone acetylation were compared for 4-phenylbutyrate and structurally related molecules.
Growth-inhibitory effects on DS19 mouse erythroleukemia cells were seen in the micromolar concentration range with allicin and S-allylmercaptocysteine and in the millimolar range with allyl butyrate, allyl phenyl sulfone, and S-allyl cysteine. Increased acetylation of histones was induced by incubation of cells with the allyl compounds at concentrations similar to those that resulted in the inhibition of cell proliferation. The induction of histone acetylation by S-allylmercaptocysteine was also observed in Caco-2 human colon cancer cells and T47D human breast cancer cells.
View Article and Find Full Text PDF