Computed tomography (CT) and magnetic resonance imaging (MRI) have revolutionized the assessment of traumatic brain injury (TBI) by permitting rapid detection and localization of acute intracranial injuries. In concussion, the most common presentation of sports-related head trauma, CT and MRI are unrevealing. This normal appearance of the brain on standard neuroimaging, however, belies the structural and functional pathology that underpins concussion-related symptoms and dysfunction.
View Article and Find Full Text PDFOBJECTIVEThe object of this study was to use diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) to characterize the long-term effects of hydrocephalus and shunting on white matter integrity and to investigate the relationship of ventricular size and alterations in white matter integrity with headache and quality-of-life outcome measures.METHODSPatients with shunt-treated hydrocephalus and age- and sex-matched healthy controls were recruited into the study and underwent anatomical and DTI imaging on a 3-T MRI scanner. All patients were clinically stable, had undergone CSF shunt placement before 2 years of age, and had a documented history of complaints of headaches.
View Article and Find Full Text PDFRegistration of subject and control brains to a common anatomical space or template is the basis for quantitatively delineating regions of abnormality in an individual brain. Normally, a brain atlas is chosen as the template. Limitations in the registration process result in persistent differences between individual subject brains and template, which can be a source of error in an analysis.
View Article and Find Full Text PDF