Publications by authors named "Asif Bakshi"

Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In , they are instrumental for segment-specific neurogenesis and myogenesis early in development.

View Article and Find Full Text PDF

The establishment of centromeric chromatin and its propagation by the centromere-specific histone CENPA is mediated by epigenetic mechanisms in most eukaryotes. DNA replication origins, origin binding proteins, and replication timing of centromere DNA are important determinants of centromere function. The epigenetically regulated regional centromeres in the budding yeast have unique DNA sequences that replicate earliest in every chromosome and are clustered throughout the cell cycle.

View Article and Find Full Text PDF

Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9-13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far.

View Article and Find Full Text PDF

Highly conserved DM domain-containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In the central nervous system, a set of Doublesex (Dsx)-expressing neuroblasts undergo apoptosis in females whereas their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that the female-specific isoform of Dsx collaborates with Hox gene () to bring about this apoptosis.

View Article and Find Full Text PDF