Publications by authors named "Asier Ruiz"

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes.

View Article and Find Full Text PDF

Oligodendrocytes are the myelin forming cells of the central nervous system, and their vulnerability to excitotoxicity induced by glutamate contributes to the pathogenesis of neurological disorders including brain ischemia and neurodegenerative diseases, such as multiple sclerosis. In addition to glutamate receptors, oligodendrocytes express GABA receptors (GABAR) that are involved in their survival and differentiation. The interactions between glutamate and GABAergic systems are well documented in neurons, under both physiological and pathological conditions, but this potential crosstalk in oligodendrocytes has not been studied in depth.

View Article and Find Full Text PDF

Amyloid beta (Aβ)-mediated synapse dysfunction is an early event in Alzheimer's disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aβ peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aβ load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice.

View Article and Find Full Text PDF

Microglia act as sensors of injury in the brain, favoring its homeostasis. Their activation and polarization toward a proinflammatory phenotype are associated with injury and disease. These processes are linked to a metabolic reprogramming of the cells, characterized by high rates of glycolysis and suppressed oxidative phosphorylation.

View Article and Find Full Text PDF

Styrene 7,8-oxide (SO) is the principal metabolite of styrene, an industrial neurotoxic compound which causes various neurodegenerative disorders. The present study aimed to explore the mechanisms of SO cytotoxicity (0.5 - 4mM) in primary cortical neurons and to evaluate the neuroprotective potential of quercetin (QUER).

View Article and Find Full Text PDF

Sephin1 is a derivative of guanabenz that inhibits the dephosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α) and therefore may enhance the integrated stress response (ISR), an adaptive mechanism against different cellular stresses, such as accumulation of misfolded proteins. Unlike guanabenz, Sephin1 provides neuroprotection without adverse effects on the α2-adrenergic system and therefore it is considered a promising pharmacological therapeutic tool. Here, we have studied the effects of Sephin1 on N-methyl-D-aspartic acid (NMDA) receptor signaling which may modulate the ISR and contribute to excitotoxic neuronal loss in several neurodegenerative conditions.

View Article and Find Full Text PDF

Mitochondrial fission mediated by cytosolic dynamin related protein 1 (Drp1) is essential for mitochondrial quality control but may contribute to apoptosis as well. Blockade of Drp1 with mitochondrial division inhibitor 1 (mdivi-1) provides neuroprotection in several models of neurodegeneration and cerebral ischemia and has emerged as a promising therapeutic drug. In oligodendrocytes, overactivation of AMPA-type ionotropic glutamate receptors (AMPARs) induces intracellular Ca overload and excitotoxic death that contributes to demyelinating diseases.

View Article and Find Full Text PDF

Oligodendrocytes are highly vulnerable to glutamate excitotoxicity, a central mechanism involved in tissue damage in Multiple Sclerosis (MS). Sustained activation of AMPA receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, increase of reactive oxygen species, and activation of intracelular pathways resulting in apoptotic cell death. Although many signals driven by excitotoxicity have been identified, some of the key players are still under investigation.

View Article and Find Full Text PDF

α/β-Hydrolase domain-containing 6 (ABHD6) contributes to the hydrolysis of the major endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS) and in the periphery. ABHD6 blockade has been proposed as novel strategy to treat multiple sclerosis (MS), based on the observation that the inhibitor WWL70 exerts protective anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE). According to recent data, WWL70 exhibits off-target anti-inflammatory activity in microglial cells and the potential of ABHD6 as drug target in MS remains controversial.

View Article and Find Full Text PDF

Amyloid beta- (A-) mediated ROS overproduction disrupts intraneuronal redox balance and exacerbates mitochondrial dysfunction which leads to neuronal injury. Polyphenols have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of morin and mangiferin against A oligomers in cultured cortical neurons and organotypic slices as well as their mechanisms of action.

View Article and Find Full Text PDF

The growing interest in mobile devices is transforming wireless identification technologies. Mobile and battery-powered Radio Frequency Identification (RFID) readers, such as hand readers and smart phones, are are becoming increasingly attractive. These RFID readers require energy-efficient anti-collision protocols to minimize the tag collisions and to expand the reader's battery life.

View Article and Find Full Text PDF

Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen.

View Article and Find Full Text PDF

Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury.

View Article and Find Full Text PDF

Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling.

View Article and Find Full Text PDF

Overactivation of ionotropic glutamate receptors induces a Ca(2+) overload into the cytoplasm that leads neurons to excitotoxic death, a process that has been linked to several neurodegenerative disorders. While the role of mitochondria and its involvement in excitotoxicity have been widely studied, the contribution of endoplasmic reticulum (ER), another crucial intracellular store in maintaining Ca(2+) homeostasis, is not fully understood. In this study, we analyzed the contribution of ER-Ca(2+) release through ryanodine (RyR) and IP(3) (IP(3)R) receptors to a neuronal in vitro model of excitotoxicity.

View Article and Find Full Text PDF