Publications by authors named "Asier Aztiria"

Occupational stress is increasingly present in our society. Usually, it is detected too late, resulting in physical and mental health problems for the worker, as well as economic losses for the companies due to the consequent absenteeism, presenteeism, reduced motivation or staff turnover. Therefore, the development of early stress detection systems that allow individuals to take timely action and prevent irreversible damage is required.

View Article and Find Full Text PDF

As members of an increasingly aging society, one of our major priorities is to develop tools to detect the earliest stage of age-related disorders such as Alzheimer's Disease (AD). The goal of this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavior data to detect the multimodal symptoms that are often found to be impaired in AD. After gathering longitudinal smart home data for 29 older adults over an average duration of 2 years, we automatically labeled the data with corresponding activity classes and extracted time-series statistics containing ten behavioral features.

View Article and Find Full Text PDF

Introduction: The number of Alzheimer's Disease (AD) patients is increasing with increased life expectancy and 115.4 million people are expected to be affected in 2050. Unfortunately, AD is commonly diagnosed too late, when irreversible damages have been caused in the patient.

View Article and Find Full Text PDF

Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages.

View Article and Find Full Text PDF

Identifying users' frequent behaviors is considered a key step to achieving real, intelligent environments that support people in their daily lives. These patterns can be used in many different applications. An algorithm that compares current behaviors of users with previously discovered frequent behaviors has been developed.

View Article and Find Full Text PDF