Introduction: Analyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA).
Methods: In 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens.
In this longitudinal study, cell-free tumour DNA (a liquid biopsy) from plasma was explored as a prognostic biomarker for gastro-oesophageal cancer. Both tumour-informed and tumour-agnostic approaches for plasma variant filtering were evaluated in 47 participants. This was possible through sequencing of DNA from tissue biopsies from all participants and cell-free DNA from plasma sampled before and after surgery (n = 42), as well as DNA from white blood cells (n = 21) using a custom gene panel with and without unique molecular identifiers (UMIs).
View Article and Find Full Text PDFStem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification.
View Article and Find Full Text PDFHow time is measured by neural stem cells during temporal neurogenesis has remained unresolved. By combining experiments and computational modeling, we define a Shh/Gli-driven three-node timer underlying the sequential generation of motor neurons (MNs) and serotonergic neurons in the brainstem. The timer is founded on temporal decline of Gli-activator and Gli-repressor activities established through down-regulation of Gli transcription.
View Article and Find Full Text PDFDespite the widening range of high-throughput platforms and exponential growth of generated data volume, the validation of biomarkers discovered from large-scale data remains a challenging field. In order to tackle cancer heterogeneity and comply with the data dimensionality, a number of network and pathway approaches were invented but rarely systematically applied to this task. We propose a new method, called NEAmarker, for finding sensitive and robust biomarkers at the pathway level.
View Article and Find Full Text PDFThe new web resource EviNet provides an easily run interface to network enrichment analysis for exploration of novel, experimentally defined gene sets. The major advantages of this analysis are (i) applicability to any genes found in the global network rather than only to those with pathway/ontology term annotations, (ii) ability to connect genes via different molecular mechanisms rather than within one high-throughput platform, and (iii) statistical power sufficient to detect enrichment of very small sets, down to individual genes. The users' gene sets are either defined prior to upload or derived interactively from an uploaded file by differential expression criteria.
View Article and Find Full Text PDFBackground: The statistical evaluation of pathway enrichment, i.e. of gene profiles' confluence to the pathway level, allows exploring molecular landscapes using functionally annotated gene sets.
View Article and Find Full Text PDFSummary: Although small non-coding RNAs, such as microRNAs, have well-established functions in the cell, long non-coding RNAs (lncRNAs) have only recently started to emerge as abundant regulators of cell physiology, and their functions may be diverse. A small number of studies describe interactions between small and lncRNAs, with lncRNAs acting either as inhibitory decoys or as regulatory targets of microRNAs, but such interactions are still poorly explored. To facilitate the study of microRNA-lncRNA interactions, we implemented miRcode: a comprehensive searchable map of putative microRNA target sites across the complete GENCODE annotated transcriptome, including 10 419 lncRNA genes in the current version.
View Article and Find Full Text PDF