Protein kinases catalyze the phosphorylation of proteins most commonly on Ser, Thr, and Tyr residues and regulate many cellular events in eukaryotic cells, such as cell cycle progression, transcription, metabolism, and apoptosis. Protein kinases each have a conserved ATP-binding site and one or more substrate-binding site(s) that exhibit recognition features for different protein substrates. By bringing ATP and a substrate into proximity, each protein kinase can transfer the γ phosphate of the ATP molecule to a hydroxyl group of the target residue on the substrate.
View Article and Find Full Text PDFHypoxic solid tumors induce the stabilization of hypoxia-inducible factor 1 alpha (HIF1α), which stimulates the expression of many glycolytic enzymes and hypoxia-responsive genes. A high rate of glycolysis supports the energetic and material needs for tumors to grow. Fructose-1,6-bisphosphate aldolase A (ALDOA) is an enzyme in the glycolytic pathway that promotes the expression of HIF1α.
View Article and Find Full Text PDFIron is an essential requirement for the survival and virulence for bacteria. The bacterial ferrous iron transporter protein B (FeoB) functions as a major iron transporter in prokaryotes and has an N-terminal domain (NFeoB) with homology to eukaryotic G-proteins. Its GTPase activity is required for ferrous iron uptake, making it a potential target for antivirulence therapies.
View Article and Find Full Text PDFLysyl hydroxylase-2 (LH2) catalyzes the hydroxylation of telopeptidyl lysine residues on collagen, leading to the formation of stable collagen cross-links that connect collagen molecules and stabilize the extracellular matrix. High levels of LH2 have been reported in the formation and stabilization of hydroxylysine aldehyde-derived collagen cross-links (HLCCs), leading to fibrosis and cancer metastasis in certain tissues. Identification of small-molecule inhibitors targeting LH2 activity requires a robust and suitable assay system, which is currently lacking.
View Article and Find Full Text PDFThe use of AlphaScreen detection has allowed researchers to examine a wide variety of molecular interactions for use in high-throughput screening. However, the cost of Alpha reagents can often be prohibitory for extended screening campaigns or for young investigators with limited funding. To reduce assay costs, many labs have focused on miniaturization, while there have been limited efforts to scale down Alpha reagents.
View Article and Find Full Text PDFSerotonin (5-hydroxytryptamine, 5-HT) is a critical local regulator of epithelial homeostasis in the breast and exerts its actions through a number of receptors. Dysregulation of serotonin signaling is reported to contribute to breast cancer pathophysiology by enhancing cell proliferation and promoting resistance to apoptosis. Preliminary analyses indicated that the potent 5-HT1B/1D serotonin receptor agonist 5-nonyloxytryptamine (5-NT), a triptan-like molecule, induced cell death in breast cancer cell lines.
View Article and Find Full Text PDFA high rate of glycolysis, which supplies energy and materials for anabolism, is observed in a wide range of tumor cells, making it a potential pathway to control cancer growth. ALDOA is a multifunctional enzyme in the glycolytic pathway and also promotes HIF-1α, which is of importance in hypoxic solid tumors. The current method for assaying ALDOA activity involves monitoring the consumption of NADH in vitro using absorbance or intrinsic fluorescence via a coupled enzymatic reaction.
View Article and Find Full Text PDFHydroxylysine aldehyde-derived collagen cross-links (HLCCs) accumulate in fibrotic tissues and certain types of cancer and are thought to drive the progression of these diseases. HLCC formation is initiated by lysyl hydroxylase 2 (LH2), an Fe(II) and α-ketoglutarate (αKG)-dependent oxygenase that hydroxylates telopeptidyl lysine residues on collagen. Development of LH2 antagonists for the treatment of these diseases will require a reliable source of recombinant LH2 protein and a non-radioactive LH2 enzymatic activity assay that is amenable to high throughput screens of small molecule libraries.
View Article and Find Full Text PDFApyrase is a calcium-activated enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP), adenosine monophosphate (AMP), and P. It is currently used in studies involving cancer and platelet aggregation in humans, as well as herbicide resistance in plants. Inhibitors of apyrase are being investigated for their use to suppress tumors and combat herbicide resistance.
View Article and Find Full Text PDFThe hypoxia-inducible transcription factor HIF1α drives expression of many glycolytic enzymes. Here, we show that hypoxic glycolysis, in turn, increases HIF1α transcriptional activity and stimulates tumor growth, revealing a novel feed-forward mechanism of glycolysis-HIF1α signaling. Negative regulation of HIF1α by AMPK1 is bypassed in hypoxic cells, due to ATP elevation by increased glycolysis, thereby preventing phosphorylation and inactivation of the HIF1α transcriptional coactivator p300.
View Article and Find Full Text PDFWe have recently demonstrated that the undifferentiated PSA-/lo prostate cancer (PCa) cell population harbors self-renewing long-term tumor-propagating cells that are refractory to castration, thus representing a therapeutic target. Our goals here are, by using the same lineage-tracing reporter system, to track the dynamic changes of PSA-/lo and PSA+ cells upon castration in vitro, investigate the molecular changes accompanying persistent castration, and develop large numbers of PSA-/lo PCa cells for drug screening. To these ends, we treated LNCaP cells infected with the PSAP-GFP reporter with three regimens of castration, i.
View Article and Find Full Text PDFProtein kinases have emerged as an important class of therapeutic targets, as they are known to be involved in pathological pathways linked to numerous human disorders. Major efforts to discover kinase inhibitors in both academia and pharmaceutical companies have centered on the development of robust assays and cost-effective approaches to isolate them. Drug discovery procedures often start with hit identification for lead development, by screening a library of chemicals using an appropriate assay in a high-throughput manner.
View Article and Find Full Text PDFeEF-2K is a potential target for treating cancer. However, potent specific inhibitors for this enzyme are lacking. Previously, we identified 2,6-diamino-4-(2-fluorophenyl)-4H-thiopyran-3,5-dicarbonitrile (DFTD) as an inhibitor of eEF-2K.
View Article and Find Full Text PDFPERK, as one of the principle unfolded protein response signal transducers, is believed to be associated with many human diseases, such as cancer and type-II diabetes. There has been increasing effort to discover potent PERK inhibitors due to its potential therapeutic interest. In this study, a computer-based virtual screening approach is employed to discover novel PERK inhibitors, followed by experimental validation.
View Article and Find Full Text PDFeEF-2 kinase is a potential therapeutic target for breast cancer, gliomas, and depression. No potent inhibitors of eEF-2K have been reported, and thus development of high-throughput assay systems may expedite the process. Two high-throughput assays are described for eEF-2K using recombinant, tag-free enzyme purified from bacteria.
View Article and Find Full Text PDFThe JNK-JIP1 interaction represents an attractive target for the selective inhibition of JNK-mediated signaling. We report a virtual screening (VS) workflow, based on a combination of three-dimensional shape and electrostatic similarity to discover novel scaffolds for the development of non-ATP competitive inhibitors of JNK targeting the JNK-JIP interaction. Of 352 (0.
View Article and Find Full Text PDFEvidence that elongation factor 2 kinase (eEF-2K) has potential as a target for anticancer therapy and possibly for the treatment of depression is emerging. Here the steady-state kinetic mechanism of eEF-2K is presented using a peptide substrate and is shown to conform to an ordered sequential mechanism with ATP binding first. Substrate inhibition by the peptide was observed and revealed to be competitive with ATP, explaining the observed ordered mechanism.
View Article and Find Full Text PDFEukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated.
View Article and Find Full Text PDFThe eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail.
View Article and Find Full Text PDFThe extracellular signal-regulated protein kinase, ERK2, fully activated by phosphorylation and without a His(6) tag, shows little tendency to dimerize with or without either calcium or magnesium ions when analyzed by light scattering or analytical ultracentrifugation. Light scattering shows that ~90% of ERK2 is monomeric. Sedimentation equilibrium data (obtained at 4.
View Article and Find Full Text PDFThe mitogen-activated protein (MAP) kinase ERK2 contains recruitment sites that engage canonical and noncanonical motifs found in a variety of upstream kinases, regulating phosphatases and downstream targets. Interactions involving two of these sites, the D-recruitment site (DRS) and the F-recruitment site (FRS), have been shown to play a key role in signal transduction by ERK/MAP kinases. The dynamic nature of these recruitment events makes NMR uniquely suited to provide significant insight into these interactions.
View Article and Find Full Text PDFProtein kinases are enzymes that regulate many cellular events in eukaryotic cells, such as cell-cycle progression, transcription, metabolism, and apoptosis. Protein kinases each have a conserved ATP-binding site, as well as one or more substrate-binding site(s) that exhibit recognition features for a protein substrate. Thus, by bringing ATP and a substrate into close proximity, each protein kinase can modify its substrate by transferring the gamma phosphate of the ATP molecule to a serine, threonine, or tyrosine residue on the substrate.
View Article and Find Full Text PDFKava ( Piper methysticum Forst. f., Piperaceae), prepared as the traditional aqueous infusion, was tested in the rat for possible effects on liver function tests.
View Article and Find Full Text PDF