A systematic investigation is carried out using the B3LYP, BLYP, and BHLYP functionals and MP2 level of theory to characterize the low-lying electronic singlet and triplet GeC2N2 isomers. The basis sets used are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, DZP++. Three bent isomers Ge(CN)2, CNGeCN, and Ge(NC)2 are located on the singlet and triplet potential energy surfaces.
View Article and Find Full Text PDFIt is well-established that many covalently-bonded atoms of Groups IV-VII have directionally-specific regions of positive electrostatic potential (σ-holes) through which they can interact with negative sites. In the case of Group VII, this is called "halogen bonding." We have studied two series of molecules: the F3MX and, for comparison, the H3MX (M = C, Si and Ge; X = F, Cl, Br and I).
View Article and Find Full Text PDFSystematic computational studies of stannylene derivatives SnX(2)/SnXY and XSnR/SnR(2)/RSnR' were carried out using density functional theory. The basis sets used for H, F, Cl, Br, C, Si, and Ge atoms are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, denoted DZP++. For the iodine and tin atoms, the Stuttgart-Dresden basis sets, with relativistic small-core effective core potentials (ECP), are used.
View Article and Find Full Text PDFA systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located.
View Article and Find Full Text PDFA systematic theoretical investigation was carried out to study the reactions of various germylenes with germane. Molecular structures of the reactants (GeX(2) and GeHX, where X = H, F, Cl and Br) plus GeH(4), transition states, and products have been optimized to understand the effects of halo-substituted germylenes. The basis set used is of double-zeta plus polarization quality with additional s- and p-type diffuse functions.
View Article and Find Full Text PDFA systematic investigation of the GeX(2) and GeXY species was carried out using the popular DFT functionals BLYP, B3LYP, and BHHLYP. Predicted are the singlet-triplet energy gaps and four types of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy. The basis sets used for all atoms in this work are of double-zeta plus polarization quality with additional s- and p-type diffuse functions denoted DZP++, except for iodine where the 6-311G(d,p) basis set is used.
View Article and Find Full Text PDF