Genome-resolved insights into the structure and function of the drinking water microbiome can advance the effective management of drinking water quality. To enable this, we constructed and curated thousands of metagenome-assembled and isolate genomes from drinking water distribution systems globally to develop a Drinking Water Genome Catalog (DWGC). The current DWGC disproportionately represents disinfected drinking water systems due to a paucity of metagenomes from nondisinfected systems.
View Article and Find Full Text PDFLeveraging comammox and anammox bacteria for shortcut nitrogen removal can drastically lower the carbon footprint of wastewater treatment facilities by decreasing aeration energy, carbon, alkalinity, and tank volume requirements while also potentially reducing nitrous oxide emissions. However, their co-occurrence as dominant nitrifying bacteria is rarely reported in full-scale wastewater treatment. As a result, there is a poor understanding of how operational parameters, in particular, dissolved oxygen, impact their activity and synergistic behavior.
View Article and Find Full Text PDFTropical peatlands in South-East Asia are some of the most carbon-dense ecosystems in the world. Extensive repurposing of such peatlands for forestry and agriculture has resulted in substantial microbially-driven carbon emissions. However, we lack an understanding of the microorganisms and their metabolic pathways involved in carbon turnover.
View Article and Find Full Text PDF