Solid polymer electrolytes (SPEs) typically consist of salts with mobile anions that could cause instabilities and parasitic side reactions in solid-state lithium (Li) batteries. To address this challenge, single-Li-ion conducting (SLIC) SPEs, where anions of Li salts are covalently attached to the polymer backbone, have been utilized to reduce the number of mobile anions. This approach improves the cationic transference number but is accompanied by a loss of ionic conductivity.
View Article and Find Full Text PDFSafety concerns of traditional liquid electrolytes, especially when paired with lithium (Li) metal anodes, have stimulated research of solid polymer electrolytes (SPEs) to exploit the superior thermal and mechanical properties of polymers. Polyphosphazenes are primarily known for their use as flame retardant materials and have demonstrated high Li-ion conductivity owing to their highly flexible P = N backbone which promotes Li-ion conduction via inter- and intrachain hopping along the polymer backbone. While polyphosphazenes are largely unexplored as SPEs in the literature, a few existing examples showed promising ionic conductivity.
View Article and Find Full Text PDFCurrent lithium-ion battery separators made from polyolefins such as polypropylene and polyethylene generally suffer from low porosity, low wettability, and slow ionic conductivity and tend to perform poorly against heat-triggering reactions that may cause potentially catastrophic issues, such as fire. To overcome these limitations, here we report that a porous composite membrane consisting of poly(vinylidene fluoride--hexafluoropropylene) nanofibers functionalized with nanodiamonds (NDs) can realize a thermally resistant, mechanically robust, and ionically conductive separator. We critically reveal the role of NDs in the polymer matrix of the membrane to improve the thermal, mechanical, crystalline, and electrochemical properties of the composites.
View Article and Find Full Text PDF