Background: Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement.
Methods: To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated Cre/Fmr1 (cOFF) and Cre/Fmr1 (cON) mice, respectively.