Publications by authors named "Ashwin Kothari"

Low-power wide area network (LPWAN) technologies as part of IoT are gaining a lot of attention as they provide affordable communication over large areas. LoRa and Sigfox as part of LPWAN have emerged as highly effective and promising non-3GPP unlicensed band IoT technologies while challenging the supremacy of cellular technologies for machine-to-machine-(M2M)-based use cases. This paper presents the design goals of LoRa and Sigfox while throwing light on their suitability in congested environments.

View Article and Find Full Text PDF

Healthy sleep signifies a good physical and mental state of the body. However, factors such as inappropriate work schedules, medical complications, and others can make it difficult to get enough sleep, leading to various sleep disorders. The identification of these disorders requires sleep stage classification.

View Article and Find Full Text PDF

EM waves are extremely powerful when it comes to propagation of information during communication. There is no alternative to EM waves in such applications. However, the use of EM waves or antennas in general has not been explored fully as sensors for measuring the change in physical environment.

View Article and Find Full Text PDF

Noise type and strength estimation are important in many image processing applications like denoising, compression, video tracking, etc. There are many existing methods for estimation of the type of noise and its strength in digital images. These methods mostly rely on the transform or spatial domain information of images.

View Article and Find Full Text PDF

Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions.

View Article and Find Full Text PDF

In computer-aided diagnosis (CAD) of mediolateral oblique (MLO) view of mammogram, the accuracy of tissue segmentation highly depends on the exclusion of pectoral muscle. Robust methods for such exclusions are essential as the normal presence of pectoral muscle can bias the decision of CAD. In this paper, a novel texture gradient-based approach for automatic segmentation of pectoral muscle is proposed.

View Article and Find Full Text PDF