Publications by authors named "Ashwin Acharya"

Preparation requires technical research and development, as well as adaptive, proactive governance.

View Article and Find Full Text PDF

Computational investigations with density functional theory (DFT) have been performed on the N-heterocyclic carbene (NHC) catalyzed ring-opening polymerization of ε-caprolactone in the presence and in the absence of a methanol initiator. Much like the zwitterionic ring opening (ZROP) of δ-valerolactone which was previously reported, calculations predict that the mechanism of the ZROP of caprolactone that occurs without an alcohol present involves a high-barrier step involving ring opening of the zwitterionic tetrahedral intermediate formed after the initial nucleophilic attack of NHC on caprolactone. However, the operative mechanism by which caprolactone is polymerized in the presence of an alcohol initiator does not involve the analogous mechanism involving initial nucleophilic attack by the organocatalytic NHC.

View Article and Find Full Text PDF

Experimental and computational investigations of the zwitterionic ring-opening polymerization (ZROP) of δ-valerolactone (VL) catalyzed by the N-heterocyclic carbenes (NHC) 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (1) and 1,3,4,5-tetramethyl-imidazol-2-ylidene (2) were carried out. The ZROP of δ-valerolactone generates cyclic poly(valerolactone)s whose molecular weights are higher than predicted from [VL]0/[NHC]0. Kinetic studies reveal the rate of polymerization is first order in [VL] and first order in [NHC].

View Article and Find Full Text PDF

90 kDa heat shock protein (HSP90) is a ubiquitous molecular chaperone and is one of the abundant proteins present in a cell under normal and stressed conditions. The adenosine triphosphate (ATP) binding region of HSP90 is currently under a great degree of study because of the interest of its role in cancer and protein maintenance; the binding of ATP to HSP90 induces a large conformational change in the protein as a result of the activity of different types of stressors within the cells. In the present paper, a simple microfluidic biosensor is proposed for the characterization of ATP-HSP90 interactions through the principle of bioresistive variation.

View Article and Find Full Text PDF

The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS). In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1h23r1cbtrdvm90iri14a34v8php8nvu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once