Publications by authors named "Ashwani Khurana"

We previously reported that the antimalarial compound quinacrine (QC) induces autophagy in ovarian cancer cells. In the current study, we uncovered that QC significantly upregulates cathepsin L (CTSL) but not cathepsin B and D levels, implicating the specific role of CTSL in promoting QC-induced autophagic flux and apoptotic cell death in OC cells. Using a Magic Red cathepsin L activity assay and LysoTracker red, we discerned that QC-induced CTSL activation promotes lysosomal membrane permeability (LMP) resulting in the release of active CTSL into the cytosol to promote apoptotic cell death.

View Article and Find Full Text PDF

Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients.

View Article and Find Full Text PDF

Metabolic alterations are increasingly recognized as important novel anti-cancer targets. Among several regulators of metabolic alterations, fructose 2,6 bisphosphate (F2,6BP) is a critical glycolytic regulator. Inhibition of the active form of PFKFB3 using a novel inhibitor, PFK158 resulted in reduced glucose uptake, ATP production, lactate release as well as induction of apoptosis in gynecologic cancer cells.

View Article and Find Full Text PDF

We have previously shown that the anti-malarial compound Quinacrine (QC) inhibits ovarian cancer (OC) growth by modulating autophagy. In the present study we extended these studies to identify the molecular pathways regulated by QC to promote apoptosis independent of p53 status in OC. QC exhibited strong anti-cancer properties in OC cell lines in contrast to other anti-malarial autophagy inhibiting drugs.

View Article and Find Full Text PDF

Objective: Generate preclinical data on the effect of quinacrine (QC) in inhibiting tumorigenesis in endometrial cancer (EC) in vitro and explore its role as an adjunct to standard chemotherapy in an EC mouse model.

Methods: Five different EC cell lines (Ishikawa, Hec-1B, KLE, ARK-2, and SPEC-2) representing different histologies, grades of EC, sensitivity to cisplatin and p53 status were used for the in vitro studies. MTT and colony formation assays were used to examine QC's ability to inhibit cell viability in vitro.

View Article and Find Full Text PDF

Defective autophagy and deranged metabolic pathways are common in cancer; pharmacologic targeting of these two pathways could provide a viable therapeutic option. However, how these pathways are regulated by limited availability of growth factors is still unknown. Our study shows that HSulf-1 (endosulfatase), a known tumor suppressor which attenuates heparin sulfate binding growth factor signaling, also regulates interplay between autophagy and lipogenesis.

View Article and Find Full Text PDF

The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression.

View Article and Find Full Text PDF

A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner.

View Article and Find Full Text PDF

Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling.

View Article and Find Full Text PDF

Background: Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell metabolism.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes.

View Article and Find Full Text PDF

The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar.

View Article and Find Full Text PDF

Heregulin (HRG), a combinatorial ligand for the epidermal growth factor receptor family, is expressed in about 30% of breast cancer tumors. HRG induces tumorigenicity and metastasis of breast cancer cells and promotes hormone-independent growth. Although HRG has been studied mostly in the context of the HRG receptor family, accumulating evidence suggests that HRG plays distinctive and causative roles in breast cancer tumorigenesis independent from the HRG receptors, demanding a comprehensive and independent study of HRG as a unique growth factor.

View Article and Find Full Text PDF

Sulfatase 2 (Sulf-2) has been previously shown to be upregulated in breast cancer. Sulf-2 removes sulfate moieties on heparan sulfate proteoglycans which in turn modulate heparin binding growth factor signaling. Here we report that matrix detachment resulted in decreased Sulf-2 expression in breast cancer cells and increased cleavage of poly ADP-ribose polymerase.

View Article and Find Full Text PDF

Endosulfatases HSulf-1 and -2 (also referred to as Sulf1 and -2) represent a family of enzymes that modulate heparin binding growth factor signaling. Heparan sulfatase 1 (HSulf-1) and heparan sulfatase 2 (HSulf-2) are two important 6-O endosulfatases which remove or edit 6-O sulfate residues of N-glucosamine present on highly sulfated HS. Alteration of heparan sulfatases have been identified in the context of several cancer types.

View Article and Find Full Text PDF

Introduction: Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions that have the potential to become invasive. Very little is known about the molecular alterations involved in the progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor signaling, angiogenesis and tumorigenesis.

View Article and Find Full Text PDF

Inactivation of von Hippel-Lindau (VHL), a tumor suppressor gene is often associated with clear cell renal cell carcinoma (ccRCC). VHL inactivation leads to multitude of responses including enhanced growth factor signaling such as bFGF2, SDF-1α, and HGF. Here, we have identified a novel VHL-inducible gene, heparan sulfatase 2 (HSulf-2) that attenuates heparan-binding growth factor such as bFGF2 signaling.

View Article and Find Full Text PDF

HtrA1, a member of serine protease family, has been previously found to be involved in resistance to chemotherapy in ovarian cancer although the underlying mechanism is not clear. Using mixture-based oriented peptide library approach, previously we identified X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis proteins family, as a potential substrate of HtrA1. The aim of our work is to investigate the link between HtrA1 and XIAP proteins and their relationships with chemoresistance in ovarian cancer.

View Article and Find Full Text PDF

HSulf-1 modulates the sulfation states of heparan sulfate proteoglycans critical for heparin binding growth factor signaling. In the present study, we show that HSulf-1 is transcriptionally deregulated under hypoxia in breast cancer cell lines. Knockdown of HIF-1α rescued HSulf-1 downregulation imposed by hypoxia, both at the RNA and protein levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine if loss of serine protease HtrA1 in endometrial cancer will promote the invasive potential of EC cell lines.

Experimental Design: Western blot analysis and immunohistochemistry methods were used to determine HtrA1 expression in EC cell lines and primary tumors, respectively. Migration, invasion assays and in vivo xenograft experiment were performed to compare the extent of metastasis between HtrA1 expressing and HtrA1 knocked down clones.

View Article and Find Full Text PDF

We recently identified HSulf-1 as a down-regulated gene in ovarian carcinomas. Our previous analysis indicated that HSulf-1 inactivation in ovarian cancers is partly mediated by loss of heterozygosity and epigenetic silencing. Here, we show that variant hepatic nuclear factor 1 (vHNF1), encoded by transcription factor 2 gene (TCF2, HNF1beta), negatively regulates HSulf-1 expression in ovarian cancer.

View Article and Find Full Text PDF

Clearance of misfolded proteins from the ER is central for maintenance of cellular homeostasis. This process requires coordinated recognition, ER-cytosol translocation, and finally ubiquitination-dependent proteasomal degradation. Here, we identify an ER resident seven-transmembrane protein (JAMP) that links ER chaperones, channel proteins, ubiquitin ligases, and 26S proteasome subunits, thereby optimizing degradation of misfolded proteins.

View Article and Find Full Text PDF

The RING finger ubiquitin ligase Siah2 controls the stability of various substrates involved in stress and hypoxia responses, including the PHD3, which controls the stability of HIF-1alpha. In the present study we determined the role of Siah2 phosphorylation in the regulation of its activity toward PHD3. We show that Siah2 is subject to phosphorylation by p38 MAPK, which increases Siah2-mediated degradation of PHD3.

View Article and Find Full Text PDF