In recent years, the large electric field enhancement and tight spatial confinement supported by the so-called epsilon near-zero (ENZ) mode has attracted significant attention for the realization of efficient nonlinear optical devices. Here, we experimentally demonstrate ENZ photonic gap antennas (PGAs), which consist of a dielectric pillar within which a thin slab of indium tin oxide (ITO) material is embedded. In ENZ PGAs, hybrid dielectric-ENZ modes emerge from strong coupling between the dielectric antenna modes and the ENZ bulk plasmon resonance.
View Article and Find Full Text PDF