Publications by authors named "Ashutosh Dahal"

The conductivity of a neodymium-based artificial honeycomb lattice undergoes dramatic changes upon application of magnetic fields and currents. These changes are attributed to a redistribution of magnetic charges that are formed at the vertices of the honeycomb due to the nonvanishing net flux of magnetization from adjacent magnetic elements. It is suggested that the application of a large magnetic field or a current causes a transition from a disordered state, in which magnetic charges are distributed at random, to an ordered state, in which they are regularly arranged on the sites of two interpenetrating triangular Wigner crystals.

View Article and Find Full Text PDF

Quantum magnetic properties in a geometrically frustrated lattice of spin-1/2 magnet, such as quantum spin liquid or solid and the associated spin fractionalization, are considered key in developing a new phase of matter. The feasibility of observing the quantum magnetic properties, usually found in geometrically frustrated lattice of spin-1/2 magnet, in a perovskite material with controlled disorder is demonstrated. It is found that the controlled chemical disorder, due to the chemical substitution of Ru ions by Co-ions, in a simple perovskite CaRuO creates a random prototype configuration of artificial spin-1/2 that forms dimer pairs between the nearest and further away ions.

View Article and Find Full Text PDF

The nature of magnetic correlation at low temperature in two-dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature-dependent micromagnetic simulations.

View Article and Find Full Text PDF