IEEE/ACM Trans Comput Biol Bioinform
February 2024
This article proposes an event-driven solution to genotype imputation, a technique used to statistically infer missing genetic markers in DNA. The work implements the widely accepted Li and Stephens model, primary contributor to the computational complexity of modern x86 solutions, in an attempt to determine whether further investigation of the application is warranted in the event-driven domain. The model is implemented using graph-based Hidden Markov Modeling and executed as a customized forward/backward dynamic programming algorithm.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2023
Inference at-the-edge using embedded machine learning models is associated with challenging trade-offs between resource metrics, such as energy and memory footprint, and the performance metrics, such as computation time and accuracy. In this work, we go beyond the conventional Neural Network based approaches to explore Tsetlin Machine (TM), an emerging machine learning algorithm, that uses learning automata to create propositional logic for classification. We use algorithm-hardware co-design to propose a novel methodology for training and inference of TM.
View Article and Find Full Text PDF